}/““"‘4 | AT e N
7

CTNL AN . JRESY
Introductlon

Oftentlmes people choose a meal based on a

eat in a meal while not surpassing a set
number of calories consumed. This study
Investigates this type problem by formulating
the problem as a 0-1 Knapsack Problem, which

programming.

W 7S l \ (TRl

g o |

Solving the 0-1 Knapsack Problem with
Dynamic Programming can be thought of
- separating the overall problem into multiple
sub-problems. Once the sub-problems have
been solved, the solutions can be compared to
see which one iIs optimal. In terms of the
optimal meal problem, this would consist of
comparing a small number of foods at a time.

™
' . Y - _s\‘ﬂbdlb

~ N s ¥

| [J] KnapsackSolver,java = menubd 3

7 BEQ&hicken The capacity (i.e. max number of calories).

The first number represents the

"lIIIIL--!ﬁHiihh-!!nH:JE I E! F]rElEE ﬂ
The second number represents the

7 Gardernburger 1 . . .
weight (i.e. calories).

2 SeasonedCorn 2 70
9 TurkevBurger 24 440
10 SweetPotato 3 120
11 GreenBeans 2 30

12 PJTFlatBread 15 350
1ZChickenBowl 23 430

The number of items in the list.

The Furman University Dining Hall uploads its
daily menu on a website, where it lists
nutritional values for each item. After extracting
the appropriate data to a text file, dynamic
programming may be used to optimize the
items. In the above text file, the list of food
items also lists the protein and caloric content
&1 (for one serving). In order to comply with a 0-1
s formulation of the Knapsack Problem, the
optimized solution will determine whether or
. hot to take a single serving of a given food
item.

_.; ug.n

particular goal. For example, a person may |,
want to maximize the amount of protein they |

can be solved using a strategy called dynamic

T

‘j‘\.'.f What is Dynamic Programming? |

S PEEEREREEEREEE

-

- N

The Knapsack Problem:
An Implementation in the Furman Dining Hall

Andrew Emerson

Department of Computer Science, Furman University, Greenville, SC
RN A T R Y VN | 1 ’_';..,.;..,YM"' MR TN

Conclusmn

Code/AIgorlthm

.K napsackSalver, menu, m KnapsackSolverjava &5 | |5 menu.bd
7 while c _________ 1= null} {
String[] lineResults = currline.split(™ "}:
mes | ter] lineResult=s[0]
drew i} W [ter] Integer.par (t=[11):
Compt ghts[er] Integer.par i [21): I
i n: KN ! b tertt ‘;,i
data comes f o ¥ew; (41 currline bufferedRead dL () l
8 # Takes in N food items with their appropriate nutritional value & weight; : H .
§ * User sets desired nutritional value W (weight); 43 bufferedReader.close(}); :
iha hould ta 14 }
11 % 35 catch (ICException =) {
12 public class KnapsackSolver { 46 System.out.println("File not found."):

static int I = 0; //Munber of items 7 e.printStacklrace();
static int = 0; //Max weigh B ‘
static String[] names; //Food 1items
static int[] values; //Respective nutritional values (i.e. protein content) =
fm s - T] ; .] 2] Ff opt[i] [J] = max profit of packing items 0..i-1 with weight limit J
static int[] weights; //Respective nutritional weights (i.e. calories, fats...| =- ff optlill]] max profit of packing s mw
52 /7 s0lTilT<1 = does opt solution to pack items O . . -

public static void main(String[] aros) | int[][] option = new int[N+1]1[W+l]:

String filelame = "menu.txt"; boolean[] [] sclution = new boolean[N+1] [F+1]:
2 //Reads text File to store imout 56 for (int 1 = 1; 1 <= N; i++) {
\. 7 try { : for {(int j = 1; j <= F; j++) {
24 FileReader [ileBeader - new Fil:R:ad:LiI_L:ch:]; o
BufferedReader bufferedReader = BufferedReader (fileReader); - S))
String currline = bufferedieader, readline () : o int optionl = cption[i-1][31:
String[] firstlineResults = currline. split(" "); 0 |
28 N = Integer. firstLineResults[0 s T
L,, J= Iﬂtegeri Ef atli ilts H; 63 int optionZ = Integer.MIN VALUE: -
- o S A g4 i [ghEs i = 5 ionz = i ionf[i- 5 - [ghEs[i .
A 30 names = new Stri g[IHl] 64 if (wveights[i] <= j) optionl values[i] + option[i-1l][i-veights[i]l]:
’ 3l lu new int[N+1]; £
. Iy =lect better of two options
32 velghts = new int[N+1]; B
L g_ buff [_r]J dLine) option[i] [j] = HMath.max(optionl, optionl);
CUrrlinge = DUrrercdnegder,.readbinel)
.) solution[i] [j] = (optionZ > optionl);
int counter = 1;
E
S/ determine which item=s to take “
boolean|] ake = new boolean[N+1]:;
for iint'_=N,:'—F '_>CI.: i--) {
if (= n[i] [3]1) { take[i] = trume j =3 - weights[i]: }

E].SE{]-r[]=f1

T3 f{ print results
£ = »
80 System.out.println("Item™ +"%c"+"Wc™ + "Valuse"™ + "\T" + "Weight™ + "A\L" + "Take"):
N
81 for (int 1 = 1; 1 <= N; i4++) {
i 82 System.onut.println(names[i] +"At" + wvaluss[i] + "\ t" + weights[i] + "“t" + take[i]):
o 1 . B

DR SN T R R R L N W aea L N

= After reading the text file with the Dining Hall menu information,
?- the above program Iimplements a dynamic programming

algorithm to find the optimal combination of foods. Essentially,
the algorithm decides if it Is a better option to take a given food
item rather than leaving Iit. By determining the max profit of
taking a particular item, the program determines if another item
may produce a better value for its respective weight.

- - W
3 .

_ iAn ‘. LA - S o n \’ : A «V

1 WD
Q)
3
O |
(D
|
D
(7))

1 C
~ |

ORI OO - QR B
?2: Item Talue Weight Take o :
V# BEQChicken 232 220 true | ’
F Broccoll 2 20 true
BakedPotato = 200 fal=e
,5‘- PepperoniPizza 14 280 fal=e
ﬂ COues=sadilla 13 260 true
’l Gardernburger 13 310 fal=e e
SeasonedCorn 2 70 fal=se
TurkeyBurger 24 440 fal=e
sweetPotato 3 120 falz=e
GreenBeans 2 30 crue
PJITFlatEBread 15 300 falz=e
ChickenBowl 23 430 fal=e

Shown above are the results of the sample text file discussed
previously. On a day where the above items are served at the
Dining Hall, a person wanting to maximize protein intake while not
surpassing 550 calories would ideally like to eat one serving of
the BBQ chicken, broccoli, cheese guesadilla, and green beans.
With a much larger selection of food, the sample result might be
different. Notice that the calories of the selected foods add up to
535, which has more room to increase before reaching the pre-
determined maximum of 550.

: ' . \‘ \\ -

oA RN
T A R NN

—r " : | '

: Further Study

.
!
|
I

N ‘

. \\Lf..\

~ @FURMAN

Turkey Burger |
Char-grilled turkey burger on a kaiser roll e
N

Serving Size 1 each

Amount Per Serving

Calories 440

Calories From Fat 150

Total Fat 17 g
Saturated Fat 430
Trans Fat 0g

Cholestrol 80 mg
Sodium 760 mg

Total Carbohydrate 44 0
Dietary Fiber 0g
Sugars 20

Protein 24 g

What is the point of applying dynamic
programming to optimizing different
aspects of a meal? The point is that we can
apply dynamic programming to many
different applications, food optimization
being one of them. For instance, instead of
looking at protein and calories, the
algorithm could maximize fiber intake while
not surpassing a certain carbohydrate &
intake. Essentially, this investigation shows
that it Is possible to formulate food |
optimization into a 0-1 Knapsack Problem. |3

S 2 i .) e Pa s 'h

—
’.I --- Al 4‘4“ _ - -

For further investigation, it would be possible to
study the application of dynamic programming [
food optimization with more parameters. For
iInstance, what if somebody wanted to |
maximize their protein and carbohydrate

iIntake, but not surpass a fat intake? A future
study could determine techniques to formulate
and solve this problem in terms of the
Knapsack Problem. Another interesting
iInvestigation would be studying different
optimization techniques In relation to this
problem, such as the branch and bound
method.

T T T
.

L

