Title

Extending the language of DNA molecular recognition by polyamides: unexpected influence of imidazole and pyrrole arrangement on binding affinity and specificity

ACS Citation

Buchmueller, K. L.; Staples, A. M.; Howard, C. M.; Horick, S. M.; Uthe, P. B.; Le, N. M.; Cox, K. K.; Nguyen, B.; Pacheco, K. A. O.; Wilson, W. D.; Lee, M. Extending the language of DNA molecular recognition by polyamides: unexpected influence of imidazole and pyrrole arrangement on binding affinity and specificity. J. Am. Chem. Soc. 2005, 127, 742-50.

Abstract

Pyrrole (Py) and imidazole (Im) polyamides can be designed to target specific DNA sequences. The effect that the pyrrole and imidazole arrangement, plus DNA sequence, have on sequence specificity and binding affinity has been investigated using DNA melting (DeltaT(M)), circular dichroism (CD), and surface plasmon resonance (SPR) studies. SPR results obtained from a complete set of triheterocyclic polyamides show a dramatic difference in the affinity of f-ImPyIm for its cognate DNA (K(eq) = 1.9 x 10(8) M(-1)) and f-PyPyIm for its cognate DNA (K(eq) = 5.9 x 10(5) M(-1)), which could not have been anticipated prior to characterization of these compounds. Moreover, f-ImPyIm has a 10-fold greater affinity for CGCG than distamycin A has for its cognate, AATT. To understand this difference, the triamide dimers are divided into two structural groupings: central and terminal pairings. The four possible central pairings show decreasing selectivity and affinity for their respective cognate sequences: -ImPy > -PyPy- > -PyIm- approximately -ImIm-. These results extend the language of current design motifs for polyamide sequence recognition to include the use of "words" for recognizing two adjacent base pairs, rather than "letters" for binding to single base pairs. Thus, polyamides designed to target Watson-Crick base pairs should utilize the strength of -ImPy- and -PyPy- central pairings. The f/Im and f/Py terminal groups yielded no advantage for their respective C/G or T/A base pairs. The exception is with the -ImPy- central pairing, for which f/Im has a 10-fold greater affinity for C/G than f/Py has for T/A.

Source Name

Journal of the American Chemical Society

Publication Date

1-1-2005

Volume

127

Issue

2

Page(s)

659-668

Document Type

Citation

Citation Type

Article