Synthesis ofcis and trans bis-alkynyl complexes of Cr(III) and Rh(III) supported by a tetradentate macrocyclic amine: a spectroscopic investigation of the M(III)-alkynyl interaction

ACS Citation

Sun, C.; Turlington, C. R.; Thomas, W. W.; Wade, J. H.; Stout, W. M.; Grisenti, D. L.; Forrest, W. P.; VanDerveer, D. G.; Wagenknecht, P. S. Synthesis ofcis and trans bis-alkynyl complexes of Cr(III) and Rh(III) supported by a tetradentate macrocyclic amine: a spectroscopic investigation of the M(III)-alkynyl interaction. Inorg. Chem. 2011, 50, 9354-64.

Abstract

Alkynyl complexes of the type M(cyclam)(CCR)(2)]OTf (where cyclam = 1,4,8,11-tetraazacyclotetradecane; M = Rh(III) or Cr(III); and R = phenyl, 4-methylphenyl, 4-trifluoromethylphenyl, 4-fluorophenyl, 1-naphthalenyl, 9-phenanthrenyl, and cyclohexyl) were prepared in 49% to 93% yield using a one-pot synthesis involving the addition of 2 equiv of RCCH and 4 equiv of BuLi to the appropriate M(cyclam)(OTf)(2)]OTf complex in THF. The cis and trans isomers of the alkynyl complexes were separated using solubility differences, and the stereochemistry was characterized using infrared spectroscopy of the CH(2) rocking and NH bending region. All of the trans-M(cyclam)(CCR)(2)]OTf complexes exhibit strong Raman bands between 2071 and 2109 cm(-1), ascribed to ν(s)(C≡C). The stretching frequencies for the Cr(III) complexes are 21-28 cm(-1) lower than for the analogous Rh(III) complexes, a result that can be interpreted in terms of the alkynyl ligands acting as π-donors. UV-vis spectra of the Cr(III) and Rh(III) complexes are dominated by strong charge transfer (CT) transitions. In the case of the Rh(III) complexes, these CT transitions obscure the metal centered (MC) transitions, but in the case of the Cr(III) complexes the MC transitions are unobscured and appear between 320 and 500 nm, with extinction coefficients (170-700 L mol(-1) cm(-1)) indicative of intensity stealing from the proximal CT bands. The Cr(III) complexes show long-lived (240-327 μs), structureless, MC emission centered between 731 and 748 nm in degassed room temperature aqueous solution. Emission characteristics are also consistent with the arylalkynyl ligands acting as π-donors. The Rh(III) complexes also display long-lived (4-21 μs), structureless, metal centered emission centered between 524 and 548 nm in degassed room temperature solution (CH(3)CN).

Source Name

Inorganic Chemistry

Publication Date

1-1-2011

Volume

50

Issue

19

Page(s)

509-514

Document Type

Citation

Citation Type

Article

Share

COinS