
Furman University Furman University

Furman University Scholar Exchange Furman University Scholar Exchange

Mathematics Publications Mathematics

10-16-2018

A Comparison of Algorithms for Finding an Efficient Theme Park A Comparison of Algorithms for Finding an Efficient Theme Park

Tour Tour

Liz Bouzarth
Furman University

Richard J. Forrester
Dickinson College

Kevin Hutson
Furman University

Rahul Isaac
Furman University

James Midkiff
Dickinson College

See next page for additional authors

Follow this and additional works at: https://scholarexchange.furman.edu/mth-publications

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Elizabeth L. Bouzarth, Richard J. Forrester, Kevin R. Hutson, Rahul Isaac, James Midkiff, Danny Rivers,
Leonard J. Testa, "A Comparison of Algorithms for Finding an Efficient Theme Park Tour", Journal of
Applied Mathematics, vol. 2018, Article ID 2453185, 14 pages, 2018. https://doi.org/10.1155/2018/
2453185

This Article (Journal or Newsletter) is made available online by Mathematics, part of the Furman University Scholar
Exchange (FUSE). It has been accepted for inclusion in Mathematics Publications by an authorized FUSE
administrator. For terms of use, please refer to the FUSE Institutional Repository Guidelines. For more information,
please contact scholarexchange@furman.edu.

https://scholarexchange.furman.edu/
https://scholarexchange.furman.edu/mth-publications
https://scholarexchange.furman.edu/mth
https://scholarexchange.furman.edu/mth-publications?utm_source=scholarexchange.furman.edu%2Fmth-publications%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarexchange.furman.edu%2Fmth-publications%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1155/2018/2453185
https://doi.org/10.1155/2018/2453185
%E2%80%9Dhttp:/scholarexchange.furman.edu/lib-records/1/%E2%80%9D
mailto:scholarexchange@furman.edu

Authors Authors
Liz Bouzarth, Richard J. Forrester, Kevin Hutson, Rahul Isaac, James Midkiff, Danny Rivers, and Leonard J.
Testa

This article (journal or newsletter) is available at Furman University Scholar Exchange:
https://scholarexchange.furman.edu/mth-publications/1

https://scholarexchange.furman.edu/mth-publications/1

Research Article
A Comparison of Algorithms for Finding an Efficient
Theme Park Tour

Elizabeth L. Bouzarth ,1 Richard J. Forrester ,2 Kevin R. Hutson ,1 Rahul Isaac ,1

James Midkiff ,2 Danny Rivers ,1 and Leonard J. Testa 3

1Furman University, Department of Mathematics, Greenville, SC 29613, USA
2Dickinson College, Department of Mathematics and Computer Science, Carlisle, PA 17013, USA
3TouringPlans.com, Celebration, FL 34747, USA

Correspondence should be addressed to Richard J. Forrester; forrestr@dickinson.edu

Received 23 August 2018; Accepted 17 September 2018; Published 16 October 2018

Academic Editor: Quanke Pan

Copyright © 2018 Elizabeth L. Bouzarth et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The problem of efficiently touring a theme park so as tominimize the amount of time spent in queues is an instance of the Traveling
Salesman Problem with Time-Dependent Service Times (TSP-TS). In this paper, we present a mixed-integer linear programming
formulation of the TSP-TS and describe a branch-and-cut algorithm based on this model. In addition, we develop a lower bound
for the TSP-TS and describe two metaheuristic approaches for obtaining good quality solutions: a genetic algorithm and a tabu
search algorithm. Using test instances motivated by actual theme park data, we conduct a computational study to compare the
effectiveness of our algorithms.

1. Introduction

Theme parks like Walt Disney World in Orlando, Florida,
attract millions of tourists each year. While these parks pro-
vide great entertainment, a common complaint is the amount
of time spent waiting in line for the various attractions.
Whole industries have arisen to help tourists maximize their
entertainment value by offering advice on how to optimally
tour parks to minimize such waiting (e.g., [1, 2]). Here, we
look at the problem of finding a shortest route through an
amusement park that takes into account the wait time of
the attractions. This is an instance of the Traveling Salesman
Problem with Time-Dependent Service Times (TSP-TS) [3].

The TSP-TS is a variation of the Traveling Salesman
Problem (TSP) and was introduced by Tas et al. [3]. Given a
set of locations and distances between every pair of locations,
the classical TSP seeks to find the shortest possible route
that visits each location and returns to the starting location.
For the TSP-TS, the duration of time spent at each location
is defined as a function of the arrival time to that location.
The objective is to minimize the total route duration, which
consists of the sumof the total travel time and the total service

time. In our setting, the service times represent attraction
wait times and ride times.

Time-dependency in the TSP literature is typically
addressed in terms of travel times. In particular, the Time-
Dependent Traveling Salesman Problem (TDTSP) seeks to
find the shortest tour through the locations when the time to
travel depends not only on the distance but also on the time
of day the route is traversed. Because the TDTSP incorporates
a more realistic touring cost structure, it has been used
to model several other applications including scheduling
single-machine jobs with time-dependent setup costs [4, 5],
creating timetables for university exams to minimize back-
to-back exams [6], production planning for car assembly
lines [7], satisfying product demands at minimum travel and
purchasing costs [8], and vehicle routing with varying travel
times such as within regions of congestion [9–15]. Vander
Wiel and Sahinidis [16, 17] note that the TDTSP is NP-
hard, but little has been published in terms of heuristics,
especially heuristics that incorporate a time-dependency.
Multiple authors [4, 5, 12, 16–18] have proposed mixed-
integer linear programs (MILP) for producing solutions to
the TDTSP, but these exact solutions have generally been for

Hindawi
Journal of Applied Mathematics
Volume 2018, Article ID 2453185, 14 pages
https://doi.org/10.1155/2018/2453185

http://orcid.org/0000-0002-8951-001X
http://orcid.org/0000-0001-9884-8533
http://orcid.org/0000-0001-8634-7985
http://orcid.org/0000-0002-2162-0351
http://orcid.org/0000-0001-8044-2105
http://orcid.org/0000-0002-6633-5255
http://orcid.org/0000-0002-7191-450X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/2453185

2 Journal of Applied Mathematics

networks with tens of nodes rather than hundreds. Relax-
ations to these MILP formulations though have provided
upper and lower bounds for TDTSP instances. Malandraki
and Daskin [12] combine a MILP formulation with TSP
nearest neighbor heuristics to solve random instances of up to
25 locations. Vander Wiel and Sahinidis [16] solve problems
of size up to 100 locations by developing a time-dependent
version of the well-known Lin-Kernighan heuristic with their
MILP formulation. Cordeau et al. [19] consider a version of
the TDTSP where the time range is subdivided into equal-
length subintervals and the average travel speed is known.
They use an algorithm by Ichoua et al. [20] to compute the
travel time on each arc. Further, they develop a branch-
and-cut algorithm to produce solutions for instances up
to 40 vertices. Other approaches taken include dynamic
programming [21], simulated annealing [22, 23],MonteCarlo
methods [24], and genetic algorithms [25, 26]. With the
exception of [16], most of the heuristic approaches employed
are ones that were developed for the time-independent TSP
and do not try to make use of the time-dependent nature of
the problem.

The majority of the papers on the TDTSP focus on
allowing congestion to build up on routes during certain
parts of the day and consider the time spent at locations
negligible [27]. However, in a theme park scenario, it is the
variability in the wait time for rides that greatly increases
tour time rather than variations in travel time. Tas et al.
[3] introduce the Traveling Salesman Problem with Time-
Dependent Service Times (TSP-TS) to model scenarios such
as this. They show that in cases where service times are
modeled by a linear or quadratic function with certain
specifications, the service times cannot be incorporated
into arc durations like those used in [19]. They propose
formulations for the TSP-TS and measure the effectiveness
of different subtour elimination constraints. We will show
that our version of the TSP-TS also cannot be modeled as a
TDTSP.

Themain contributions made in this paper are as follows.

(1) We extend the TSP-TS introduced by Tas et al. [3] to
include more general service time functions.

(2) By incorporating wait times into the distances
between nodes, we construct an asymmetric TSP that
can be used to compute a lower bound on the TSP-TS.

(3) We propose a mixed-integer linear programming
model of the TSP-TS and describe a branch-and-cut
algorithm based on this formulation.

(4) We create a new metric, 𝛿, to guide tour construction
and augmentation and we develop both a genetic
algorithm and tabu search algorithm that can be used
to find good quality solutions to the TSP-TS in an
efficient manner.

(5) Motivated by actual theme park data, we introduce a
collection of test problems that utilize different types
of wait time distributions.

(6) Finally, we perform a detailed computational study to
compare the effectiveness of our algorithms.

The remainder of this paper is organized as follows. In
Section 2, we formally describe our version of the TSP-
TS, propose a mixed-integer linear programming (MILP)
formulation, and describe a branch-and-cut algorithm. In
Section 3, we show that our version of the TSP-TS cannot be
modeled as a TDTSP and describe a method for computing
a lower bound on the optimal solution. Section 4 describes
two different metaheuristic approaches for solving the TSP-
TS using a genetic algorithm and a tabu search algorithm. We
present our test data and computational results in Sections 5
and 6, respectively. Section 7 highlights our conclusion.

2. Problem Description and Formulation

In this section, we begin by introducing the notation that will
be used throughout the paper.We then present aMILPmodel
for our version of the TSP-TS and describe a branch-and-cut
algorithm based on this formulation.

2.1. Notation. Let 𝐺 = (𝑁,𝐴) be a connected digraph with
node set 𝑁 = {1, 2, . . . , 𝑛} and arc set 𝐴 = {(𝑖, 𝑗) | 𝑖, 𝑗 ∈
𝑁, 𝑖 ̸= 𝑗}. Associated with each arc is a travel time from node
𝑖 to node 𝑗, 𝑤𝑖𝑗, while associated with each node 𝑖 is a service
time function 𝑐𝑖(𝑡), where 𝑡 corresponds to the arrival time to
node 𝑖. For our application, the nodes represent theme park
attractions, 𝑤𝑖𝑗 represents the time to walk from attraction 𝑖
to attraction 𝑗, and 𝑐𝑖(𝑡) represents the sum of the wait time
and ride time when arriving at attraction 𝑖 at time 𝑡. The TSP-
TS aims to minimize the total tour duration, beginning and
ending at node 1 (possibly representing the entrance to the
park), including the total walking time and the total service
time.

Tas et al. [3] considered both linear and quadratic service
time functions 𝑐𝑖(𝑡). However, such functions are not realistic
in a theme park scenario. In practice, service (wait) time
data at each attraction is collected at 𝐾 + 1 discrete times
𝑇0, 𝑇1, . . . , 𝑇𝐾. In this paper, we consider two types of 𝑐𝑖(𝑡)
functions based on data collected at these times. The first
is to define 𝑐𝑖(𝑡) as a step function where 𝑐𝑖(𝑡) is set to be
the wait time recorded at attraction 𝑖 at time 𝑇𝑚−1 for all
𝑡 ∈ [𝑇𝑚−1, 𝑇𝑚). The second is to compute 𝑐𝑖(𝑡) using linear
interpolation of the wait times recorded at 𝑇𝑚−1 and 𝑇𝑚 for
all 𝑡 ∈ [𝑇𝑚−1, 𝑇𝑚). While wait times computed using linear
interpolation are more realistic, they are difficult to model
using mixed-integer programming. However, such functions
can easily be handled using metaheuristics.

2.2. Mathematical Model. To formulate the TSP-TS as an
MILP, we will assume that 𝑐𝑖(𝑡) is a step function over
the 𝐾 intervals [𝑇0, 𝑇1), [𝑇1, 𝑇2), . . . , [𝑇𝐾−1, 𝑇𝐾]. We refer to
[𝑇𝑚−1, 𝑇𝑚) as time interval 𝑚. Our model is formulated on
an expanded graph where each arc (𝑖, 𝑗) from node 𝑖 to node
𝑗 is replaced by 𝐾 parallel arcs from 𝑖 to 𝑗, one for each
time interval. In this new network we define 𝑐𝑚𝑖 to represent
the service time (sum of the wait time and ride time) when
arriving at node 𝑖 during time period𝑚.

For notational convenience, we introduce the set 𝑆 =
{2, 3, . . . , 𝑛} to represent the set of possible successor nodes

Journal of Applied Mathematics 3

and define𝑀 = {1, . . . , 𝐾} to be the set of all time intervals.
The decision variables for our formulation are as follows.

𝑥𝑚𝑖𝑗 = {{{
1 if node 𝑗 is visited immediately after node 𝑖 and you arrive at node 𝑗 during time interval 𝑚
0 otherwise

𝑎𝑖𝑗 = arrival time at node 𝑗 when visited immediately after node 𝑖
(1)

Using the models presented in [12, 28] as a starting point, we
formulate our version of the TSP-TS as follows.

minimize ∑
𝑖∈𝑆

𝑎𝑖1 (2)

subject to ∑
𝑖∈𝑁
𝑖 ̸=𝑗

∑
𝑚∈𝑀

𝑥𝑚𝑖𝑗 = 1 ∀𝑗 ∈ 𝑁
(3)

∑
𝑗∈𝑁
𝑗 ̸=𝑖

∑
𝑚∈𝑀

𝑥𝑚𝑖𝑗 = 1 ∀𝑖 ∈ 𝑁
(4)

∑
𝑗∈𝑆

𝑎1𝑗 = ∑
𝑗∈𝑆

∑
𝑚∈𝑀

𝑤1𝑗𝑥𝑚1𝑗 (5)

∑
𝑗∈𝑁
𝑗 ̸=𝑖

𝑎𝑖𝑗

= ∑
𝑙∈𝑁
𝑙 ̸=𝑖

𝑎𝑙𝑖 + ∑
𝑙∈𝑁
𝑙 ̸=𝑖

∑
𝑚∈𝑀

𝑐𝑚𝑖 𝑥𝑚𝑙𝑖

+ ∑
𝑗∈𝑁
𝑗 ̸=𝑖

∑
𝑚∈𝑀

𝑤𝑖𝑗𝑥𝑚𝑖𝑗 ∀𝑖 ∈ 𝑆

(6)

∑
𝑙∈𝑁
𝑙 ̸=𝑖

𝑎𝑖𝑙 ≤ ∑
𝑗∈𝑁
𝑗 ̸=𝑖

∑
𝑚∈𝑀

(𝑇𝑚 − 1) 𝑥𝑚𝑖𝑗 ∀𝑖 ∈ 𝑆
(7)

∑
𝑙∈𝑁
𝑙 ̸=𝑖

𝑎𝑖𝑙 ≥ ∑
𝑗∈𝑁
𝑗 ̸=𝑖

∑
𝑚∈𝑀

𝑇𝑚−1𝑥𝑚𝑖𝑗 ∀𝑖 ∈ 𝑆
(8)

𝑎𝑖𝑗 ≤ ∑
𝑚∈𝑀

𝑇𝐾−1𝑥𝑚𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗 (9)

𝑥𝑚𝑖𝑗 binary ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗, 𝑚 ∈ 𝑀 (10)

Recall that we assume that our tour begins and ends at node 1.
The objective function (2) minimizes the arrival time back to
node 1 as only one variable 𝑎𝑖1 can be positive. Constraints
(3) and (4) ensure that each node is visited exactly once.
Constraint (5) computes the arrival time to node 𝑗 after
leaving node 1, while constraints (6) compute the arrival time
to node 𝑗 visited after node 𝑖 ∈ 𝑆. Note that constraints
(5) and (6) act as the subtour elimination constraints. The
temporal constraints (7) and (8) ensure that the correct time
interval 𝑚 is chosen when visiting node 𝑙 after node 𝑖 (note
that [𝑇𝑚−1, 𝑇𝑚) = [𝑇𝑚−1, 𝑇𝑚 − 1] since we assume 𝑇𝑚 is an

integer for all 𝑚). Finally, constraints (9) ensure that 𝑎𝑖𝑗 > 0
only if one of 𝑥𝑚𝑖𝑗 = 1 for any 𝑚.

To strengthen the continuous relaxation of the formu-
lation, we can include additional restrictions designed to
tighten the model as suggested in [12]. Toward this end, we
define the following sets:

𝐴𝑚𝑖𝑗 = {𝑝 ∈ 𝑀 | 𝑇𝑝 < (𝑇𝑚−1 + 𝑐𝑚𝑗)}
𝐵𝑝𝑗𝑙 = {𝑚 ∈ 𝑀 | 𝑇𝑝 < (𝑇𝑚−1 + 𝑐𝑚𝑗)}

(11)

We can then add in the following new restrictions, where 𝐿 is
a lower bound on the optimal solution.

𝑥𝑚𝑖𝑗 + ∑
𝑙∈𝑁
𝑙 ̸=𝑗

∑
𝑝∈𝐴𝑚𝑖𝑗

𝑥𝑝𝑗𝑙 ≤ 1 ∀𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑆, 𝑖 ̸= 𝑗
(12)

∑
𝑖∈𝑁
𝑖 ̸=𝑗

∑
𝑚∈𝐵
𝑝

𝑗𝑙

𝑥𝑚𝑖𝑗 + 𝑥𝑝𝑗𝑙 ≤ 1 ∀𝑙 ∈ 𝑁, 𝑝 ∈ 𝑀, 𝑗 ∈ 𝑆, 𝑗 ̸= 𝑙
(13)

∑
𝑖∈𝑆

𝑎𝑖,1 ≥ 𝐿 (14)

Constraints (12) and (13) tighten the formulation as follows.
Suppose 𝑥𝑚𝑖𝑗 = 1 so that we travel from node 𝑖 to node 𝑗 and
arrive during timeperiod𝑚.Then constraints (12) ensure that
if you then visit node 𝑙 immediately after node 𝑗, then you
must use a time interval that occurs after your arrival to 𝑗.
Suppose 𝑥𝑝𝑗𝑙 = 1 so that you travel from node 𝑗 to node 𝑙 and
arrive during time period 𝑝.Then constraints (13) ensure that
when you traveled from node 𝑖 to node 𝑗 you must use a time
period that finishes service at 𝑗 before you leave node 𝑗 to
travel to node 𝑙. Finally, constraint (14) allows us to utilize a
lower bound on the optimal solution, such as that computed
in Section 3.

2.3. Branch-and-Cut Algorithm. In this section we describe
a branch-and-cut algorithm that we developed based on
the MILP described in the previous section. Our algorithm
begins with a preprocessing phase that first computes a lower
bound 𝐿 to use in constraint (14) using the method described
in Section 3.We then utilize themetaheuristics of Section 4 to
obtain an incumbent solution to seed the branch-and-bound
procedure. The solution obtained from the metaheuristics is
also used to determine anupper bound on the number of time
intervals 𝐾 that are needed within the MILP formulation.

4 Journal of Applied Mathematics

Recall that between each pair of nodes there are 𝐾 parallel
temporal arcs, each of which is represented by a variable 𝑥𝑚𝑖𝑗 .
It is therefore advantageous to keep the number of temporal
arcs to a minimum so as to reduce the size of the MILP
formulation, which we can accomplish using the best tour
found by the metaheuristics.

After the preprocessing phase, we submit the MILP (2),
(3), (4), (5), (6), (7), (8), (9), (10), (12), (13), and (14) and
the incumbent solution to the mixed-integer programming
solver CPLEX, which was used to implement the branch-
and-cut algorithm. We utilize CPLEX’s callback functionality
to add cuts during the enumeration. Specifically, we incor-
porate additional subtour elimination constraints. Recall
that constraints (5) and (6) act as the subtour elimination
constraints for our formulation, which are similar to the
Miller-Tucker-Zemlin constraints for the TSP [30]. Note that
these constraints are weaker than the typical, yet exponential
in number, subtour elimination constraints for the TSP that
were introduced by Dantiz, Fulkerson, and Johnson [31]. We
can extend these tighter subtour elimination constraints to
our formulation as follows, where 𝑆 is the node set of a
subtour and |𝑆| is the cardinality of 𝑆:

∑
𝑖∈𝑆

∑
𝑗∈𝑆

∑
𝑚∈𝑀

𝑥𝑚𝑖𝑗 ≤ |𝑆| − 1. (15)

At each node of the branch-and-bound tree we identify vio-
lated subtour elimination constraints (15) of the LP relaxation
using a separation technique based on amin-cut algorithm of
[32] and subsequently add these constraints to the formula-
tion. Even though these additional cuts are not necessary for
the elimination of the subtours, the inequalities strengthen
the linear programming relaxation of the problem. Note that
the inequalities (15) added at any node of the enumeration
tree are valid for all the other nodes because these inequalities
are valid for the entire formulation (3), (4), (5), (6), (7),
(8), (9), (10), (12), (13), and (14). Thus, at a given node, all
the inequalities generated so far were incorporated into the
formulation.

3. Computing a Lower Bound

We begin this section by showing that our version of the
TSP-TS cannot be modeled as a TDTSP, and therefore we are
unable to use the techniques that have been developed for
computing lower bounds for the TDTSP. We then describe
a method for computing a lower bound for the TSP-TS.

First, we need to introduce some additional notation.
We define each tour of the nodes as a permutation 𝜋 =
[1, 𝜋2, . . . , 𝜋𝑛], where 𝜋𝑖 ∈ 𝑁, 2 ≤ 𝑖 ≤ 𝑛, and associated with
tour 𝜋 is a tour cost, 𝑧(𝜋) = 𝑎𝜋𝑛1, representing the time it
takes to traverse the tour as described by permutation 𝜋 and
to return to𝜋1 = 1, the entrance. To break down this tour cost,
recall we defined 𝑎𝜋𝑖−1𝜋𝑖 to be the time that the tour arrives at
the 𝑖th attraction, and let us define 𝑑𝜋𝑖 to be the time that the
tour departs the 𝑖th attraction. Note we define 𝑑1 = 0. We
can then recursively define the arrival and departure times
for each of the attractions as follows. The arrival time at the

𝑖th attraction for 𝑖 > 1 is
𝑎𝜋𝑖−1𝜋𝑖 = 𝑑𝜋𝑖−1 + 𝑤𝜋𝑖−1𝜋𝑖 . (16)

The departure time of the 𝑖th attraction for 𝑖 > 1 is
𝑑𝜋𝑖 = 𝑎𝜋𝑖−1𝜋𝑖 + 𝑐𝜋𝑖 (𝑎𝜋𝑖−1𝜋𝑖) . (17)

Thus,

𝑧 (𝜋) = 𝑎𝜋𝑛1 = 𝑑𝜋𝑛 + 𝑤𝜋𝑛𝜋1 . (18)

Following the approach in [19] it seems reasonable to try
to incorporate service time variability into travel times and
use many of the results in the TDTSP literature to establish
bounds for the TSP-TS. Much of this literature proposes to
model the TDTSP by establishing a nonnegative traversal rate
V𝑖𝑗(𝑡) for arc (𝑖, 𝑗) during times 𝑡 in time period [𝑇𝑚−1, 𝑇𝑚).
This rate is fixed during each time period but is allowed
to change to V𝑖𝑗(𝑡) when the time period changes from
[𝑇𝑚−1, 𝑇𝑚) to [𝑇𝑚, 𝑇𝑚+1), where 𝑡 ∈ [𝑇𝑚, 𝑇𝑚+1), even if the
arc traversal is not complete. This modeling technique offers
the benefits of establishing lower bounds for the TDTSP.
However, as we show here, the TSP-TS cannot be modeled
by using this technique.

Consider an instance of the TSP-TS with the following
conditions during time periods [𝑇𝑚−1, 𝑇𝑚) and [𝑇𝑚, 𝑇𝑚+1):

(1) It is possible to arrive at node 𝜋𝑖−1 at some time 𝑡0,
where 𝑡0 < 𝑇𝑚 and arrive at node 𝜋𝑖 at some time
𝑡 = 𝑡0 + 𝑐𝜋𝑖−1(𝑡0) + 𝑤𝜋𝑖−1𝜋𝑖 with 𝑇𝑚 < 𝑡 < 𝑇𝑚+1.

(2) The slope of the service time function for some node
𝜋𝑖−1 is -1 during time period [𝑇𝑚, 𝑇𝑚+1) so that, for
instance, 𝑐𝜋𝑖−1(𝑇𝑚) = 𝑐𝜋𝑖−1(𝑇𝑚+1) + (𝑇𝑚+1 − 𝑇𝑚).

In this instance of the TSP-TS, if some tour traverses arc
(𝜋𝑖−1, 𝜋𝑖) starting at time 𝑇𝑚, then it will arrive at node 𝜋𝑖 at
some time 𝑡 = 𝑇𝑚+𝑐𝜋𝑖−1(𝑇𝑚)+𝑤𝜋𝑖−1𝜋𝑖 . However, if some tour
traverses arc (𝜋𝑖−1, 𝜋𝑖) beginning at 𝑇𝑚+1, then it must arrive
at node 𝜋𝑖 at time

𝑇𝑚+1 + 𝑐𝜋𝑖−1 (𝑇𝑚+1) + 𝑤𝜋𝑖−1𝜋𝑖
= 𝑇𝑚 + (𝑐𝜋𝑖−1 (𝑇𝑚+1) + 𝑇𝑚+1 − 𝑇𝑚) + 𝑤𝜋𝑖−1𝜋𝑖
= 𝑇𝑚 + 𝑐𝜋𝑖−1 (𝑇𝑚) + 𝑤𝜋𝑖−1𝜋𝑖 = 𝑡.

(19)

Note in departing node 𝜋𝑖−1 at time 𝑇𝑚 or at time 𝑇𝑚+1 we
arrive at node 𝜋𝑖 at time 𝑡 in both cases.

Let us attempt to model this TSP-TS using a nonnegative
traversal rate V𝜋𝑖−1𝜋𝑖(𝑡) common in modeling the TDTSP.
Since we arrive at node 𝜋𝑖 at the same time, 𝑡, regardless of
whether we begin traversing arc (𝜋𝑖−1, 𝜋𝑖) at time 𝑇𝑚 or time
𝑇𝑚+1, we cover the same distance, and we have

V𝜋𝑖−1𝜋𝑖 (𝑇𝑚) [𝑇𝑚+1 − 𝑇𝑚] + V𝜋𝑖−1𝜋𝑖 (𝑇𝑚+1) [𝑡 − 𝑇𝑚+1]
= V𝜋𝑖−1𝜋𝑖 (𝑇𝑚+1) [𝑡 − 𝑇𝑚+1] .

(20)

Journal of Applied Mathematics 5

This implies that V𝜋𝑖−1𝜋𝑖(𝑇𝑚)[𝑇𝑚+1 − 𝑇𝑚] = 0, and thus
V𝜋𝑖−1𝜋𝑖(𝑇𝑚) = 0. Hence, a tour in our TSP-TS cannot cover
any ground along arc (𝜋𝑖−1 , 𝜋𝑖) during the interval [𝑇𝑚 , 𝑇𝑚+1).
Thismeans that if some tour in the TSP-TS finishes traversing
arc (𝜋𝑖−1, 𝜋𝑖) at time 𝑥, then 𝑥 ≤ 𝑇𝑚 or 𝑥 > 𝑇𝑚+1.
This contradicts the first condition of our TSP-TS instance,
which implies that a tour can complete edge (𝜋𝑖−1, 𝜋𝑖) at time
between 𝑇𝑚 and 𝑇𝑚+1.Thus, this instance of a TSP-TS cannot
bemodeled by converting service times to edge traversal rates
as is common in modeling the TDTSP. Further, this scenario
is common to amusement parks, especially among attractions
that have batch servicing.

Cordeau et al. [19] use variable arc traversal speeds to find
a lower bound for theTDTSP.They create this lower bound by
assigning, in each time interval, each arc its maximum speed
found over all time intervals. This creates an asymmetric
Traveling Salesman Problem (ATSP) as all arcs now have a
fixed traversal time. Solutions to this ATSP provide a lower
bound to the TDTSP. However, as shown in [3], solutions
to the TSP in the case of variable service times are not
necessarily a lower bound for the TSP-TS.

For a preliminary lower bound on the TSP-TS, one may
assign to each node 𝑖 a wait time equal to the minimum wait
time achieved at that node throughout the day,𝜇𝑖 = min𝑡 𝑐𝑖(𝑡).
If we incorporate this time into every arc leaving node 𝑖, the
problem becomes an instance of the asymmetric TSP where
arc (𝑖, 𝑗) has a weight of 𝜇𝑖 + 𝑤𝑖𝑗. Let 𝑧0(𝜋) denote the time
for a tour 𝜋 to finish in this ATSP. Notice that, for any tour 𝜋,
𝑧(𝜋) ≥ 𝑧0(𝜋), since every arc in the TSP-TS costs at least as
much as the corresponding arc in the ATSP. Thus, for a tour
𝜋∗𝐴 that is optimal to the ATSP problem, 𝑧0(𝜋) ≥ 𝑧0(𝜋∗𝐴), and
as a result 𝑧(𝜋) ≥ 𝑧0(𝜋∗𝐴), for all tours 𝜋. Thus 𝑧0(𝜋∗𝐴) is a
lower bound for the TSP-TS.

However, in amusement parks, wait times for different
rides often increase together, and it is unlikely to create a tour
with every ride achieving a minimum wait time. We can find
an improved lower bound by incorporating the extrawait cost
incurred by not visiting each attraction at its minimum wait
time. Define 𝑒𝜋𝑖 = 𝑐𝜋𝑖(𝑎𝜋𝑖−1𝜋𝑖) − 𝜇𝜋𝑖 to be the wait time above
𝜇𝜋𝑖 for each node 𝜋𝑖 in a tour 𝜋. Then 𝜋 has some total extra
cost accumulated over all nodes, ∑𝑛𝑖=1 𝑒𝜋𝑖 .

Consider a tour 𝜋∗ that is optimal to an instance of a
TSP-TS. We would like to find a tighter lower bound of 𝑧(𝜋∗)
than 𝑧0(𝜋∗𝐴). To that end, let 𝑆 = {𝜋∗1 , 𝜋∗2 , . . . , 𝜋∗𝑘 } be the set
of nodes corresponding the first 𝑘 attractions visited by the
optimal tour 𝜋∗. LetΠ(𝑆) be the set of all permutations of the
nodes in 𝑆, and let 𝜁 = [𝜁1, 𝜁2, . . . , 𝜁𝑘] be the permutation of
𝑆 that achieves min𝜁∈Π(𝑆)∑𝑘𝑖=1 𝑒𝜁𝑖 . Each permutation 𝜁 ∈ Π(𝑆)
has a time that it requires to visit each of its 𝑘 nodes. We call
this time 𝜏(𝜁). Let 𝜁∗ ∈ Π(𝑆) be the permutation of 𝑆 that
achieves min𝜁∈Π(𝑆)𝜏(𝜁). That is, among all tours that begin
with some permutation of the nodes in 𝑆, 𝜁∗ finishes the tour
of the nodes in 𝑆 fastest, while 𝜁 minimizes the extra wait
incurred in any tour of nodes in 𝑆. For each node V ∈ 𝑁 − 𝑆
we can redefine 𝜇V, call it 𝜇V(𝜏(𝜁∗)), to be the minimum value
of 𝑐V(𝑡) over all times 𝜏(𝜁∗) ≤ 𝑡 ≤ 𝑧(𝜋), where𝜋 is any solution
to the TSP-TS. Thus node V ∈ 𝑁− 𝑆 incurs an extra wait of at

Time of Day
0

10

20

30

40

50

60

W
ai

t t
im

e (
m

in
ut

es
)

Old Min Wait
New Min Wait

((
∗))

((

∗)) −

(∗) z()

Figure 1: Extra wait time incurred by calculating a new minimum
wait time 𝜇V(𝜏(𝜁∗)) for the feasible window of time that node V will
be visited, [𝜏(𝜁∗), 𝑧(𝜋)].

least 𝜇V(𝜏(𝜁∗))−𝜇V because it must be visited after time 𝜏(𝜁∗),
as shown in Figure 1.

To build a new lower bound on 𝑧(𝜋∗), we start with the
observation that for the particular 𝑆 used by 𝜋∗, the extra
wait incurred by the first 𝑘 nodes of 𝜋∗ is bounded below by
the minimum possible extra wait over all permutations of the
nodes in 𝑆:

𝑘

∑
𝑖=1

𝑒𝜋∗𝑖 ≥
𝑘

∑
𝑖=1

𝑒𝜁𝑖 . (21)

Additionally, the extra wait time for all nodes visited in 𝜋∗
after the 𝑘th node must be at least as large as the difference
of the updated minimum wait after 𝜏(𝜁∗) and the original
minimum wait time:

𝑛

∑
𝑖=𝑘+1

𝑒𝜋∗𝑖 ≥ ∑
V∈𝑁−𝑆

[𝜇V (𝜏 (𝜁∗)) − 𝜇V] (22)

Starting with the idea of adding extra wait times incurred to
the existing lower bound 𝑧0(𝜋∗𝐴) and incorporating inequali-
ties (21) and (22), we observe the following:

𝑧 (𝜋∗) ≥ 𝑧0 (𝜋∗𝐴) +
𝑛

∑
𝑖=1

𝑒𝜋∗𝑖

= 𝑧0 (𝜋∗𝐴) +
𝑘

∑
𝑖=1

𝑒𝜋∗𝑖 +
𝑛

∑
𝑖=𝑘+1

𝑒𝜋∗𝑖

≥ 𝑧0 (𝜋∗𝐴) +
𝑘

∑
𝑖=1

𝑒𝜁𝑖 + ∑
V∈𝑁−𝑆

[𝜇V (𝜏 (𝜁∗)) − 𝜇V] .

(23)

Define the lower bound of the extrawait time of the nodes
in 𝑆 as

𝐸 (𝑆) =
𝑘

∑
𝑖=1

𝑒𝜁𝑖 + ∑
V∈𝑁−𝑆

[𝜇V (𝜏 (𝜁∗)) − 𝜇V] . (24)

Sincewe do not knowwhich 𝑘 nodes of𝑁 the optimal tour𝜋∗
starts with, we exhaustively consider each of the (𝑛𝑘) possible
sets 𝑆 that 𝜋∗ may start with and examine all 𝑘! possible

6 Journal of Applied Mathematics

orderings of each 𝑆 to find 𝜁, 𝜁∗, and 𝜓, the set of 𝑘 nodes
that minimizes 𝐸(𝑆). This would then form a lower bound
𝑧𝜓 that improves upon the previous lower bound, 𝑧0(𝜋∗𝐴).
Continuing from inequality (23), we have

𝑧 (𝜋∗) ≥ 𝑧0 (𝜋∗𝐴) + 𝐸 (𝑆) ≥ 𝑧0 (𝜋∗𝐴) + 𝐸 (𝜓) = 𝑧𝜓. (25)

As 𝜋∗ must start with some 𝑘 nodes, it must incur extra
wait based on some 𝑆 that was considered, and so must
have extra wait at least as large as the minimum, 𝐸(𝜓). This
extra wait was completely ignored in the ATSP. In using this
approach to form the lower bound, we typically use 5 ≤ 𝑘 ≤ 7.
4. Metaheuristics

In this section we describe two different metaheuristics that
can be used to solve our version of the TSP-TS. In particular,
we develop both a genetic algorithm and a tabu search
algorithm.

Several authors have proposed metaheuristic approaches
to solving instances of the TDTSP. Testa et al. [26] implement
eight different genetic operators on 50 randomly generated
instances of the TDTSP and found certain combinations of
genetic operators were effective at producing high-quality
solutions. They show that the crossover operators edge
recombination and cycle crossover along with high levels
of mutation produce particularly good solutions on these
instances and better solutions than can be generated via
dynamic programming in a fraction of the time (see Sec-
tion 4.1.4 for crossover descriptions). Li et al. [25] use a
chained Lin-Kernighan algorithm with a double-bridge kick
mutator within a genetic algorithm framework to effectively
produce solutions to problems with realistic traffic assump-
tions (including time periods and areas with traffic jam travel
restrictions).

Before we discuss our metaheuristic approaches, we
define a new metric for comparing possible adjustments to
a tour that takes into account differences from the average
wait times of attractions. Certain tour-construction heuristic
approaches will attempt to build a tour making choices using
local information at each step. Two nodes 𝑖 and 𝑗 with equal
service times 𝑐𝑖(𝑡) = 𝑐𝑗(𝑡) can seem equally attractive to visit
in time 𝑡. However, a twenty minute wait for an attraction
that has an average wait time of an hour at time 𝑡 is more
of a bargain than an attraction with an average wait of fifteen
minutes. We let 𝑐𝑖 be the average wait for attraction 𝑖.Then for
each time 𝑡, a node 𝑖 has a deviation from its average

𝛾𝑖 (𝑡) = 𝑐𝑖 (𝑡) − 𝑐𝑖. (26)

Nodes that have little variation from average can be
visited during any time period without much bonus or
penalty. However, nodes that show large deviation from
average can potentially provide huge tour time savings and
also carry enormous time penalties. For example, Figure 2
shows an attraction whose wait time is broken down into 15
minute time periods. The average wait time, approximately
40 minutes, is shown with the dashed line. We note that
𝛾𝑖(𝑡1) = 8 − 40 = −32 while 𝛾𝑖(𝑡35) = 48 − 40 = 8. If this

Time period, tj

t10 t20 t30 t40 t50

Wait Time
Average Wait Time

0

10

20

30

40

50

60

70

W
ai

t t
im

e (
m

in
ut

es
),

c i
(t

j
)

Figure 2: Wait time data for an attraction shown with 15 minute
time periods. Dashed line demonstrates the average wait time, 𝑐𝑖.

node can be scheduled earlier or later in the tour, there are
time-saving benefits (when 𝛾𝑖 < 0), and there are penalties
for scheduling it during the middle of the day (when 𝛾𝑖 > 0).

We also take into account an average travel time between
nodes. Let 𝜔𝑖𝑗 = 𝑤𝑖𝑗 − 𝑤𝑖, where 𝑤𝑖 is the average of all 𝑛 −1 travel times associated with edges starting at node 𝑖 over
all 𝑡. Using Equations (16), (17), and (26) we define a metric
that incorporates these averages of both wait times and travel
times:

𝛿𝑖𝑗 (𝑑𝑖) = 𝛾𝜋𝑗 (𝑑𝑖 + 𝑤𝑖𝑗) + 𝜔𝑖𝑗 = 𝛾𝜋𝑗 (𝑎𝑖𝑗) + 𝜔𝑖𝑗. (27)

To the best of our knowledge, this metric has not appeared in
the literature.

4.1. Genetic Algorithms for the TSP-TS. Genetic algorithms
can be customized to fit a problem and are normally defined
by choices in the following components [33]: population
representation and initialization, fitness evaluation, repro-
duction selection, and choice of genetic and replacement
operators.

We define each candidate solution in the population
to be represented by a permutation 𝜋 of the 𝑛 locations,
which we refer to as a tour, and having fitness 𝑧(𝜋), the
tour duration given in (18). We keep 40 candidate tours at
every generation. At each iteration of a genetic algorithm,
we choose an operator via dynamic operator selection as
described in [26]. With this selection process, operators that
have demonstrated success have a higher likelihood to be
chosen to be used, where success is measured by how many
direct children, grandchildren, etc. were inserted into the
top half of the population as a result of this operator. Either
one or two tours from the population are chosen at random,
depending on the number of tours the operator takes as
input. The operator produces an offspring tour. As in [26],
we employ a (𝑃+1) reproduction approach.That is, if 𝑥 is the
candidate solution with the highest (worst) fitness value, and

Journal of Applied Mathematics 7

𝑦 is the new offspring tour, we compare the tour costs of 𝑥
and 𝑦 and keep the tour with the lower (better) fitness value.

4.1.1. Population Initialization. In generating the initial pop-
ulation, we randomly generate a portion of the 40 tours.
We combine these random tours with tours generated by
more sophisticated algorithms. We tested many of the most
commonly used construction heuristics, such as nearest
neighbor and a dynamic programming algorithm proposed
by Malandraki and Dial [21]. We also tested a variant of
nearest neighbor introduced here, called 𝛿-NearestNeighbor
(𝛿NN). This heuristic is the same as nearest neighbor except
at each iteration of the tour construction, if we are located at
node 𝑖 at time period 𝑡, we choose a node 𝑗 that minimizes
the value of 𝛿𝑖𝑗(𝑡) in (27).

4.1.2. Local Search Operators. Many genetic algorithms
employ a local search heuristic to improve population tours.
It has been shown in [34] to be an effective way to improve
solution quality. A common local search heuristic for the TSP
is the 𝑘-opt exchange heuristic. These heuristics remove 𝑘
arcs of a current solution and replace them with 𝑘 different
arcs to reproduce a tour. This procedure is repeated until no
improvements can be found. The 2-opt heuristic has been
shown to be particularly effective for improving solutions for
the TSP. Figure 3 shows a 2-opt improvement for a tour of
eight attractions.

The 2-opt in Figure 3 reverses arcs (𝑊,𝑈), (𝑈, 𝑆), and
(𝑆, 𝑃) meaning that these attractions are visited at different
times of day than previously, which can significantly change
the tour length. In a time-independent case, this would not
cause the same effect.

The Lin-Kernighan algorithm [35] is a variable 𝑘-opt
procedure that dynamically determines howmany exchanges
will be considered and has been shown to be very effective
at producing high-quality solutions for both the symmetric
TSP and the TDTSP.We considered three versions of the Lin-
Kernighan (LK) heuristic differentiated bywhether it took the
first improvement, exhaustively searched to find the best 2-
opt improvement, or used the 𝛿 metric. We found that the
version that uses the first improving 2-opt, we refer to this as
LKTD-1.

4.1.3. Mutators. Mutators take one tour as input and produce
a new tour by augmenting the selected tour in some fashion.
We considered several mutators and our tests show the
following to be effective for this problem.

(i) UniformOrder-based Mutation (UOM): This oper-
ator, described in [36], works on a single parent
tour by performing a simple swap of two randomly
selected nodes in that tour.

(ii) 𝛿-Mutate (𝛿M): This mutation operator, like UOM,
performs a single swap of nodes in a parent tour by
finding the node after the arc that has the greatest
penalty in terms of the 𝛿 metric from Equation (27)
and swaps it with a random other node.

E

W

U

S P

M

I

E

W

U

S P

M

I

6 6

77

1
2

3

5

8

4

1
2

3

5

9

2

DD

Figure 3: An example of the 2-opt heuristic on eight attractions
removes edges (𝑊,𝐷) and (𝑀, 𝑃), with weights 8 and 4, respectively,
and replaces themwith edges (𝑀,𝑊) and (𝑃, 𝐷), with weights 9 and
2, respectively.This 2-opt improves the tour fitness from 36 to 35.

E

W

U

S P

M

I

E

W

U

S P

M

I

DD

Figure 4: An example of the double-bridge kick operator on eight
attractions that removes edges (𝐷, 𝐸), (𝐼,𝑀), (𝑃, 𝑆), and (𝑈,𝑊) and
replaces them with edges (𝐷, 𝑆), (𝑃, 𝐸), (𝐼,𝑊), and (𝑈,𝑀).

(iii) Double-Bridge Kick Operator (BK): As described in
Li et al. [25], this operator, which cannot be achieved
with 2-opts alone andwhich is useful in escaping local
minima, randomly removes four arcs from the tour
and relinks the nodes in a different manner, as shown
in Figure 4.

4.1.4. Crossover Operators. Crossover operators take two par-
ent tours from the population and try to strategically combine
them to produce an offspring. The crossover operators we
found most effective were the following.

(i) Cycle Crossover (CC): This operator, described in
[37], produces an offspring from two parents by
ensuring any node appearing in position 𝑖 in the
offspring tour must appear in position 𝑖 in at least one
of the parent tours.

(ii) Edge Recombination (ER): First proposed for the
TSP in [38], ER produces a single offspring tour from
two parent tours by building a list of edges present
in both parents and transferring these edges to the
offspring. The offspring is then completed by adding
in the remaining nodes offering preference to nodes
with smaller numbers of outgoing edges. As noted
in [26], the motivation behind ER is that in the TSP
connections between locations contribute more to the
tour length than the position of the locations in the
tour.

(iii) Node Recombination (NR) via Path Relinking:This
operator follows the strategy of path relinking in
[39]. A path is constructed between two parent tours
by searching the neighborhood of the tours. Given

8 Journal of Applied Mathematics

D WUSPMIE

W MIE P DUS

M WUSPDIE

D WUPSMIE

D WUMPSIE

D PUSWMIE

M WIE P DUS

M WUPSDIE

M WUDPSIE

M PUSWDIE

M WUPDSIE

M DUWPSIE

M PUDWSIE

M WSIE P U D

Figure 5: Path relinking shown on a tour of eight attractions. Underlined nodes signify agreement between the two original parent tours.
Boxed nodes signify nodes that are in the correct spot due to the swap performed during that step.

two parent tours, 𝑥 and 𝑦, we search solutions that
share nodes in the same position in the tour as both
parents. To describe the process, Figure 5 shows two
parent tours, 𝑥 = [𝐷, 𝐸, 𝐼,𝑀,𝑃, 𝑆, 𝑈,𝑊] and 𝑦 =
[𝑀,𝐸, 𝐼, 𝑆,𝑊, 𝑃, 𝑈,𝐷], which share common nodes
in positions 2, 3, and 7. In positions where 𝑥 and 𝑦
do not have common elements, these elements are
changed in succession as follows. If 𝑥 differs from 𝑦 in
position 𝑖, 𝑥𝑖 is moved to its position in 𝑦, say position
𝑗, and the element in 𝑥𝑗 is moved to position 𝑖 while
all other nodes are held constant. We thus create a
tour 𝑥 with more nodes in common with 𝑦 than 𝑥
had in common with 𝑦. For example, in Figure 5, 𝑥
differs from 𝑦 in position 1. The element in position
1 in tour 𝑥, node 𝐷, is moved to its position in 𝑦,
position 8, and the element in position 8 in𝑥, node𝑊,
is moved to position 1 in 𝑥 to create a new tour. This
change is performed sequentially for each 1 ≤ 𝑖 ≤ 𝑛
where the tours have noncommon elements and each
of these resulting tours is evaluated for its fitness. The
tour with the best fitness after these switches is chosen
as the new parent tour 𝑥, tour [𝑀,𝐸, 𝐼,𝐷, 𝑃, 𝑆,𝑈,𝑊]
in Figure 5, and the process is repeated until any
switch results in tour 𝑦. The best tour found in the
intermediate steps is chosen as the offspring of 𝑥 and
𝑦.

(iv) SortCrossover (SX):This operator is essentially 𝛿NN
where the selection set is restricted to the two parent
tours. The SX operator takes two tours 𝑥 and 𝑦 and
constructs the offspring tour 𝑧 so that at each iteration
𝑖, 𝑧𝑖 is chosen to be the node with the minimum 𝛿
metric (equation (27)) out of the next node in 𝑥 or
in 𝑦 that has not already appeared in the constructed
tour 𝑧.

4.1.5. Preliminary Computational Study. To test the effec-
tiveness of different local search operators, mutators, and
crossover operators when applied to instances of the TSP-TS,
we completed an extensive computational study on randomly
generated instances of the TSP-TS (see Section 5 for details of
our test problems). For the sake of brevity, we omit the specific
details of our tests here. The most effective combination of
initialization, local search operators, mutators, and crossover
mutators is described as Algorithm A in Table 1. To provide
a basis of comparison we also describe the genetic algorithm
proposed in [26], identified as Algorithm B in Table 1. Note

Table 1: Genetic algorithms used for computational study. Algo-
rithm A is our best combination of operators and Algorithm B is
the best found in the literature [26].

Algorithm A B
Initialization Random, 𝛿NN Random
Local Search LKTD-1 LKTD-1
Mutator 𝛿M UOM
Crossover(s) NR, SX CX

that all of our tests regarding genetic algorithms in Section 6
will focus on these two algorithms.

4.2. Tabu Search Algorithm. In this section we describe the
tabu search algorithm used to solve TSP-TS. Tabu search,
originally introduced by Glover [40] and later formalized in
[41–43], is ametaheuristic algorithm that is known to be quite
effective for hard combinatorial optimization problems. Tabu
search begins with an initial solution and uses a local search
procedure to move from the current solution to the best one
in its neighborhood, even if the move leads to a worsening
of the objective function value. To prevent becoming stuck
at a local optima plateau, attributes of solutions that have
recently been visited are declared “tabu” for a certain number
of iterations.

4.2.1. Search Neighborhoods. In our tabu search, which is
similar to [44], we use the nearest neighbor heuristic to
generate an initial solution. Our search neighborhoods are
defined by performing all possible swap and shift moves
that are not tabu. Given a tour 𝜋 = [𝜋1, 𝜋2, . . . , 𝜋𝑛], where𝜋𝑖 represents the attraction in position 𝑖, the swap move
chooses two attractions 𝜋𝑖 and 𝜋𝑗 and then exchanges the
attractions so that each attraction is located in the position
previously occupied by the other one.The shift move chooses
two attractions 𝑖 and 𝑗 with 𝑖 < 𝑗 and a number 𝑚 with
𝑚 ≤ 𝑖, which defines the number of attractions to move. It
then relocates attractions 𝑖 − 𝑚 through 𝑖 to 𝑗, shifting any
attractions between 𝑖 and 𝑗 to the left. In our algorithm, we
consider all possible shift moves for every pair of positions 𝑖
and 𝑗 and for every value 𝑚 ≤ 𝑖.

The two neighborhoods defined by the swap and shift
moves are determined separately and the best allowable
moves from each neighborhood are compared to choose the
one to be performed. During the search process, we use the
standard aspiration criteria which allows a tabu move if it

Journal of Applied Mathematics 9

leads to a tour with a better solution than the best solution
found thus far. Our tabu search stops after a specified amount
of time has passed, which we will discuss further in Section 6.

4.2.2. Tabu Status and Tenures. For our tabu search, we used
a fixed tabu tenure of 7.5 ln(𝑛) as suggested in [44]. When
a swap occurs, exchanging attractions 𝑖 and 𝑗, swapping
any attractions located at the positions 𝑖 and 𝑗 is declared
tabu. That is, swapping the index positions becomes tabu
rather than swapping the attractions themselves.When a shift
occurs, shifting 𝑖 and 𝑗 with 𝑖 < 𝑗, moving attractions 𝑖 and 𝑗
to their previous positions ismade tabu.This is similar to how
[44] handled making swaps tabu, but we found it useful when
performing shifts. A shiftmove of 𝑖 and 𝑗 is considered tabu if
moving attraction 𝑖 to the position of 𝑗 is tabu. Note that the
swap and shift tabu lists are independent of each other.

4.2.3. Diversification Strategies. To help drive the search into
new regions of the solution space we use both light and strong
diversification techniques. A light diversification is applied
when the current tour’s fitness value has not changed by over
0.5% in the past ⌊𝑛/4⌋ iterations or when the current tour’s
fitness value has not changed at all in the past five iterations.
When the light diversification is applied, the exhaustive swap
and shift neighborhoods are determined using an alternate
fitness function that adds a small penalty to the true objective
value. Specifically, for every tour 𝜋, the frequency penalty
𝑝(𝜋) is equal to the sum of the iterations that each node 𝑘
has been at index 𝑗 in the current tour, divided by the total
number of iterations.Thenew fitness value for the tour is then
equal to 𝐹(𝜋) = 𝐹(𝜋) + 0.1𝑝(𝜋)𝐹(𝜋)/√𝑛. This new fitness
function urges the exhaustive searches to find tours outside
of the local optima plateau. This type of function was first
suggested by [45] and later used by [44].

A strong diversification is utilized when the current tour’s
fitness value has not changed by over 0.5% in the past ⌊𝑛/8⌋
iterations or when the best fitness value has not changed for
over 9𝑛 iterations. When strong diversification is applied, a
subset of ⌊𝑛/5⌋ nodes from the current tour are randomly
permuted to yield a new current tour. To select the subset
of nodes to be scrambled, we keep track of the number of
iterations each node has been at the same index and select the
⌊𝑛/5⌋ nodes that have been at their current index the longest.
This diversification can have a significant impact in terms of
sending the algorithm into an unexplored area of the search
space.

5. Test Instances

Within a themepark, thewait time data varies fromattraction
to attraction and from hour to hour. Using data supplied by
touringplans.com [29], Figure 6 shows estimated wait times
for 29 attractions at Walt Disney World’s Magic Kingdom
for the date October 20, 2014. As evidenced from the figure,
some rides have high wait times throughout the day while
others have wait times that peak early, such as thrill rides,
peak midday, such as kid attractions, or exhibit a sawtooth
pattern, such as bulk-entry shows.

Time period, tj

t10 t20 t30 t40 t50
0

10

20

30

40

50

60

70

80

W
ai

t t
im

e (
m

in
ut

es
),

c i
(t

j
)

Figure 6: Wait times for 29 attractions at the Magic Kingdom [29].

To develop test problems that mimic the types of wait
time distributions seen at Walt Disney World, we generate
a wait time 𝑐𝑖(𝑡) at each attraction 𝑖 that resembles either a
uniform, sawtooth, or peaking distribution. We also generate
a travel time 𝑤𝑖𝑗(𝑡) between attractions 𝑖 and 𝑗. Because
we focus on the scenario that the wait times, 𝑐𝑖(𝑡), dwarf
the walking times, 𝑤𝑖𝑗(𝑡), we generated the walking time
functions independent of 𝑡. To generate 𝑤𝑖𝑗, each node was
randomly assigned a position on a 1000 by 1000 grid, and
the Euclidean distance was calculated between each pair of
nodes.This result was divided by 100, to give a result generally
between 0 and 15, but largely clustered around the 5-9 range.
This aligned well with the travel times seen in real-world
scenarios.

We used the actual theme park data to motivate the
collection of distributions fromwhich we generate wait times
for networks of various sizes. For each distribution, we have
a collection of parameters that we sample from the indicated
range to give each node its own wait time distribution. There
are five types of distributions we consider to generate a
distribution on the interval 𝑥 ∈ [0, 𝑥𝑒]. In each case, we
compute a scaled distribution 𝑓(𝑥) incorporating the average
of the distribution over the interval [0, 𝑥𝑒],𝑓, and a randomly
chosen scaling factor, 𝑐:

𝑓 (𝑥) = 𝑐𝑓 (𝑥)
𝑓 . (28)

(1) Uniform distribution: Let 𝑓(𝑥) = 1, where the
parameter 𝑐 is randomly chosen from the interval
[5, 15].

(2) Sawtooth distribution: Let 𝑓(𝑥) = 𝑠 − (𝑥 mod
𝑠), where 𝑠 is randomly selected from the set
{𝑥𝑒/26, 𝑥𝑒/13} and 𝑐 = 𝑠/2. For many of our test
cases, 𝑥𝑒 = 780 minutes (this represents a common
theme park operating schedule, e.g., 9am–10pm), so
𝑠 is randomly selected from the set {30, 60} and 𝑐 is
either 15 or 30.

https://touringplans.com/

10 Journal of Applied Mathematics

(3) Bimodal distribution: Let

𝑓 (𝑥) = exp (− (𝑥 − 𝜇1)2 /2𝜎21)
√2𝜋𝜎1

+ exp (− (𝑥 − 𝜇2)2 /2𝜎22)
√2𝜋𝜎2 ,

(29)

where the following parameters are chosen randomly
from the given intervals:

𝜇1 ∈ [0.2, 0.4] 𝑥𝑒
𝜇2 ∈ [0.6, 0.8] 𝑥𝑒
𝑠1 ∈ [2, 5]
𝑠2 ∈ [2, 5]
𝜎1 ∈ 𝜇2 − 𝜇1

𝑠1
𝜎2 ∈ 𝜇2 − 𝜇1

𝑠2
𝑐 ∈ [15, 70]

(30)

(4) Beta Distribution: Let

𝑓 (𝑥) = 𝑥
𝑥𝑒 (1 −

𝑥
𝑥𝑒)
𝛽−1

, (31)

where 𝛽 is chosen randomly from the set {2, 3, 4, 5}
and 𝑐 is chosen randomly from the interval [15, 70].

(5) Erlang Distribution: Let

𝑓 (𝑥) = 1
(𝑘 − 1)! (

𝑘
4)
𝑘

(7𝑥𝑥𝑒)
𝑘−1

exp(−7𝑘𝑥4𝑥𝑒) , (32)

where 𝑘 is randomly chosen from the set {2, 3, 4} and
𝑐 is randomly chosen from the interval [15, 70].

The Beta and Erlang distributions can produce asymmetric
distributions, so we also introduce a randomly chosen reflec-
tion option where we use 𝑓(𝑥𝑒 − 𝑥) instead of 𝑓(𝑥). Figure 7
shows examples of each of these distributions.

As mentioned before, the distributions in Figure 7
attempt to mimic wait times that might typically occur in a
theme park. The Beta distribution with 𝛽 = 5 and 𝑐 = 40
might describe an attraction that has a larger wait time at
the beginning of the day but diminishes throughout the day.
Whereas the bimodal distribution represents an attraction
that gets crowded during the early morning hours and during
the afternoon but has lower wait times during the lunch
hours. The sawtooth pattern might represent an attraction
that takes in visitors at fixed points in time, like a show or
movie attraction that runs on the hour and half-hour.

Using this collection of distributions, we developed ten
different types of networks. These networks are described in

Time of Day
0 xe

Bimodal, c=50
Erlang, k=2, c=40
Beta, =2, c=60
Beta, =5, c=40

Beta (reflected), =5, c=30
Uniform, c=15
Sawtooth, s=xe/26, c=s/2

0

20

40

60

80

100

120

140

160

180

W
ai

t t
im

e
Figure 7: Examples of distributions used to generate wait times for
test problems.

Table 2, which provides the percentage of attractions that are
assigned to each type of distribution for each network type.
We randomly generated both a size 30 and 50 node problem
for each network type, yielding a test bed of 20 randomly
generated instances. In addition to these synthetic problems,
we also conducted tests on three amusement parks in Walt
Disney World in Orlando, Florida: the Magic Kingdom,
Disney’s Hollywood Studios, and Disney’s Animal Kingdom.
The data for these parks corresponds to the wait times for
October 20, 2014, and was provided by touringplans.com
[29].

6. Computational Results

We begin by examining our results for the three metaheuris-
tics: genetic algorithms A and B described in Section 4.1,
and the tabu search algorithm described in Section 4.2. The
algorithms were implemented in Java and executed on a Dell
Precision T5610 Workstation equipped with dual 2.6GHz
processors and 32GB of RAM running 64-bit Windows 7.
To allow for comparisons between the three algorithms, we
utilized a fixed time limit of five minutes for each algorithm,
as opposed to using a fixed number of generations for the
genetic algorithms or a fixed number of iterations for the tabu
search.

In Table 3 we report the minimum objective values (tour
fitness 𝑧(𝜋) from equation (18)) found using the three differ-
ent algorithms, along with the lower bounds computed using
themethod described in Section 3, for the tennetworks of size
30. Within the table, the first column identifies the network
type (as described in Table 2), while the second column gives
the lower bound computed. The next three columns give the
minimum objective values found by genetic algorithm A,

https://touringplans.com/

Journal of Applied Mathematics 11

Table 2: Percentage of testing networks comprised by each type of distribution.

Network Constant Bimodal Erlang (L) Erlang (R) Beta (L) Beta (R) Sawtooth
1 20 20 10 10 10 10 20
2 100 0 0 0 0 0 0
3 0 100 0 0 0 0 0
4 0 0 50 0 50 0 0
5 0 0 25 25 25 25 0
6 50 50 0 0 0 0 0
7 50 0 12.5 12.5 12.5 12.5 0
8 40 0 10 10 10 10 20
9 40 40 0 0 0 0 20
10 40 20 5 5 5 5 20

Table 3: Results for size 30 networks.

Linear Interpolation Step
Network LB GA-A GA-B Tabu Search GA-A GA-B Tabu Search
1 145 276 275 263 204 207 204
2 388 388 388 388 388 388 388
3 67 93 93 94 92 92 94
4 160 521 521 521 403 403 404
5 112 512 510 512 424 424 444
6 227 257 257 257 257 257 257
7 338 609 609 609 504 504 536
8 220 298 298 288 242 245 245
9 199 238 244 238 217 217 213
10 179 240 251 239 214 214 214

genetic algorithm B, and tabu search, respectively, when the
service times 𝑐𝑖(𝑡) are computed using linear interpolation.
The last three columns give the same information for when
the service times 𝑐𝑖(𝑡) are computed using a step function.The
boldfaced entries indicate the minimum value achieved over
all cases.

A number of observations can be made from Table 3.
First, note that when the service times were computed using
linear interpolation, the tabu search algorithm was the most
effective, achieving the minimum tour length found among
the three algorithms for eight of the ten networks. However,
when the service times were computed using a step function,
genetic algorithm A was superior, achieving the minimum
tour length found for nine out of the ten networks, while
the tabu search algorithm performed poorly. Second, note
that for Network 2, which consists entirely of wait times that
are constant throughout the day, all three algorithms were
able to achieve a tour length equal to the lower bound of
388, which must therefore be the optimal solution. This is
not surprising in that when all the wait times are constant,
the TSP-TS essentially reduces to a standard TSP, which is
not difficult to solve for 30 nodes. Third, the quality of the
lower bounds obtained varied significantly depending on the
network. For example, the lower bounds for Networks 1, 4, 5,
and 7 were quite poor in that the gap between the bound and
the best tour found is quite large. We believe this is due to the
abundance of attractions with Beta and Erlang distributions

and the nature inwhichwe formulate the lower bound. Recall,
the lower bound tests permutations of 5 ≤ 𝑘 ≤ 7 attractions
to find a permutation with low tour costs and combine that
withminimumwait times within the remaining timewindow
from the attractions left to tour. In most theme parks, this
works well in achieving a good lower bound because most
attractions achieve a minimum wait time during the first few
time periods and all attractions see an increase in wait times
as time period progress. In networkswith left and right Erlang
and Beta distributions, there are attractions achieving their
minimum wait times during the first few time periods and
others achieving their minimum in later time periods. Hence,
this tends to create lower bound tours utilizing attractions
with minimum wait times achieved in the first few time
periods as part of the set 𝜁 but still have many attractions
achieving minimum wait times later, thus not increasing the
lower bound substantially.

In Table 4 we report the same information as in Table 3,
but for the size 50 networks. Genetic algorithm A and the
tabu search algorithm performed similarly for both methods
of computing the service times, achieving the minimum
objective value found for about half of the network instances.
Genetic algorithm B appears to be the weakest of the three
algorithms, only achieving the minimum objective value
found in three of the network instances for both methods
of computing the service times. Note that for Network
2, which consists entirely of wait times that are constant

12 Journal of Applied Mathematics

Table 4: Results for size 50 networks.

Linear Interpolation Step
Network LB GA-A GA-B Tabu Search GA-A GA-B Tabu Search
1 214 482 481 448 379 388 348
2 593 593 593 594 593 593 594
3 102 210 216 217 207 211 211
4 153 678 682 681 648 647 640
5 114 807 806 806 773 773 765
6 356 382 383 387 381 381 391
7 374 552 552 557 497 497 497
8 300 496 493 467 397 409 399
9 279 391 419 381 359 356 352
10 297 501 512 494 444 469 434

Table 5: Results for Disney Parks.

Linear Interpolation Step
Park LB GA-A GA-B Tabu Search GA-A GA-B Tabu Search
Magic Kingdom 543 651 652 652 638 638 642
Animal Kingdom 369 407 411 407 400 404 400
Hollywood Studios 329 752 752 752 752 752 752

throughout the day, both genetic algorithms were able to
obtain the optimal solution. Networks 4 and 5 continue to be
troublesome because of the difficulty these networks present
for achieving an adequate lower bound.

In Table 5 we provide the results of the metaheuristics
applied to the three Disney theme parks, which uses the same
layout as Tables 3 and 4. Genetic algorithm A is the most
effective algorithm in that it was able to achieve theminimum
tour value found for all three theme parks. The big difference
between the lower bound gap at Hollywood Studios has to
duewith the abundance of showswith a sawtooth distribution
at this theme park. It is difficult to find tours that would
be able to achieve the minimum wait time of 0 for each of
these shows (equivalent to arriving at each of these attractions
exactly as the show is starting). Most of these shows do not
even open until later time periods, so they would not be
included in the 𝜁 set in calculating the lower bound and thus
would have a minimum wait time in later time periods of 0.

We now discuss our results of the MILP and the branch-
and-cut method of Section 2. Our algorithm was imple-
mented in Java using ILOG Concert and CPLEX 12.6, and
was executed on the same machine as the metaheuristics.
Unfortunately, our results were fairly disappointing. First, we
found that adding the cuts based on the stronger subtour
elimination constraints (15) did not improve the effectiveness
of the model. That is, we found that simply submitting the
formulation (2), (3), (4), (5), (6), (7), (8), (9), (10), (12),
(13), and (14) to CPLEX was more efficient than adding
the additional stronger cuts during the enumeration. This
is curious because many other authors have found success
utilizing this methodology (for example, see [12, 28]). We
believe that the issue is related to the large number of parallel
temporal arcs𝐾. While other authors utilize similar temporal
arcs, the number of arcs that these authors consider is much

smaller. For example, in [12, 28] they consider formulations
with 𝐾 = 3 time periods, while in comparison we utilized
approximately𝐾 = 20 temporal arcs for our size 30 networks
(recall that we use the metaheuristics to help determine the
number of arcs needed). Second, we found that ourMILPwas
unable to solve any of our test networks to optimality, and
therefore does not appear to be an effective solution method
for the TSP-TS.

While ourMILP, and the branch-and-cut algorithmbased
on thismodel, were not successful at optimizing our test cases
of the TSP-TS, we found that it was useful in quantifying the
quality of the solutions generated by our metaheuristics for
when the service times are computed using a step function.
For the 10 randomly generated networks of size 30, we
formulated (2), (3), (4), (5), (6), (7), (8), (9), (10), (12), (13),
and (14) and submitted the models to CPLEX using the best
solution found by the three metaheuristics as an incumbent
solution. We selected the CPLEX parameter to emphasize
optimality over feasibility and set a time limit of 54,000 CPU
seconds (15 hours). Our results are presented in Table 6,
where the first column identifies the network type, the second
column provides the minimum solution fitness found among
all the considered metaheuristics, and the third column gives
MIP gap between the best integer objective and the objective
of the best node remaining upon reaching the time limit.

We first note that CPLEXwas never able to improve upon
the incumbent solutions generated by the metaheuristics. As
we can see fromTable 6, five out of the ten solutions haveMIP
gaps of less than 10%. However, it is important to note that
since CPLEX was terminated before achieving optimality, it
is quite likely that the actual gaps are smaller than those listed
in Table 6. This table suggests that our metaheuristics are
able to generate good quality, if not optimal, solutions. Not
surprisingly, Networks 4, 5, and 7 have the largest optimality

Journal of Applied Mathematics 13

Table 6: MIP gaps of minimum objective values found.

Network Min. Fitness Optimality Gap
1 204 13.16%
2 388 0%
3 92 12.91%
4 403 60.30%
5 424 63.67%
6 257 7.95%
7 504 32.94%
8 242 9.09%
9 213 4.07%
10 214 7.67%

gaps. Again, we believe this is due to the presence of one-sided
Beta and Erlang distributions in large quantities.

7. Concluding Remarks

On crowded days at theme parks, the wait time of an attrac-
tion depends heavily on the time of day that the attraction is
visited. Given that frustration over waiting in lines can ruin
vacations, there is a need for effective solutions to the TSP-
TS that incorporates the time-dependency of the problem.
In this paper, we have extended the TSP-TS literature to
include these real-world service time functions and showed
how a lower bound on an optimal solution can be calculated.
We investigated a variety of approaches to generate optimal
and near-optimal solutions including a new metric used
in construction approaches that gives preference for using
attractions with high potential time savings, a branch-and-
cut algorithm for our proposed MILP, and metaheuristic
approaches. Our genetic algorithm and tabu search produced
promising and efficient results, but our computational study
highlighted the need for more sophisticated methods to yield
tighter lower bounds to aid the branch-and-cut algorithm.

These results are encouraging, but there are further
constraints that could be included in the model to make it
more realistic. As it stands, our tours give patrons no time
to eat or take breaks during the day, two highly desirable
characteristics of theme park tours. In particular, meals could
be incorporated as additional attractionswhere thewait times
could be interpreted as the time it takes to complete a meal
at a given establishment. Breaks could be implemented in
a similar fashion. Each of these could have user-defined
preferences for the times of day that these occur.

Further, theme parks have innovated around the wait
time issue. Most parks now offer a limited number of queue
priorities, which are passes that allow for shorter wait times
where patrons are given a time window to arrive to receive
priority entrance to the attraction. Sometimes these passes
are unlimited, but patrons are charged extra for their use. In
other instances, the number is limited, but the opportunity is
included with the price of admission. With the introduction
of these priority passes, an interesting question arises for
future study. Mainly, how can patrons optimally choose a

limited number of queue priorities to further reduce the time
it takes to tour a theme park?

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was funded by the Furman Advantage Sum-
mer Research Fellowship, the Furman University Summer
Mathematics Undergraduate Research Fellowship, and the
Dickinson College Curley Endowment for Student-Faculty
Research.

References

[1] B. Guides, Birnbaum’s 2019 Walt Disney World: The Official
Guide, Birnbaum Guides, 2018.

[2] B. Sehlinger and L. Testa,Unofficial Guide toWalt Disney World
2019, Unofficial Guides, 2019.

[3] D. Tas, M. Gendreau, O. Jabali, and G. Laporte, “The traveling
salesman problem with time-dependent service times,” Euro-
pean Journal of Operational Research, vol. 248, no. 2, pp. 372–
383, 2016.

[4] K. Fox, B. Gavish, and S. Graves,The Time Dependent Traveling
Salesman Problem and Extensions, vol. 7904, Graduate School
of Management, University of Rochester, 1979.

[5] J.-C. Picard andM. Queyranne, “The time-dependent traveling
salesman problem and its application to the tardiness problem
in one-machine scheduling,”Operations Research, vol. 26, no. 1,
pp. 86–110, 1978.

[6] N. Balakrishnan, A. Lucena, and R. T. Wong, “Scheduling
examinations to reduce second-order conflicts,” Computers &
Operations Research, vol. 19, no. 5, pp. 353–361, 1992.

[7] F. Jaehn and H. A. Sedding, “Scheduling with time-dependent
discrepancy times,” Journal of Scheduling, vol. 19, no. 6, pp. 737–
757, 2016.

[8] E. Angelelli, M. Gendreau, R. Mansini, and M. Vindigni, “The
traveling purchaser problem with time-dependent quantities,”
Computers & Operations Research, vol. 82, pp. 15–26, 2017.

[9] B. Fleischmann, M. Gietz, and S. Gnutzmann, “Time-varying
travel times in vehicle routing,” Transportation Science, vol. 38,
no. 2, pp. 160–173, 2004.

[10] M. Gendreau, G. Ghiani, and E. Guerriero, “Time-dependent
routing problems: A review,”Computers &Operations Research,
vol. 64, pp. 189–197, 2015.

[11] A. Haghani and S. Jung, “A dynamic vehicle routing problem
with time-dependent travel times,” Computers & Operations
Research, vol. 32, no. 11, pp. 2959–2986, 2005.

[12] C. Malandraki and M. S. Daskin, “Time dependent vehicle
routing problems: Formulations, properties and heuristic algo-
rithms,” Transportation Science, vol. 26, no. 3, pp. 185–200, 1992.

[13] S. Mancini, “A combined multistart random constructive
heuristic and set partitioning based formulation for the vehicle

14 Journal of Applied Mathematics

routing problem with time dependent travel times,” Computers
& Operations Research, vol. 88, pp. 290–296, 2017.

[14] J.-Y. Potvin, Y. Xu, and I. Benyahia, “Vehicle routing and
scheduling with dynamic travel times,”Computers &Operations
Research, vol. 33, no. 4, pp. 1129–1137, 2006.

[15] R. Spliet, S. Dabia, and T. Van Woensel, “The time window
assignment vehicle routing problemwith time-dependent travel
times,” Transportation Science, vol. 52, no. 2, pp. 261–276, 2018.

[16] R. J. V. Wiel and N. V. Sahinidis, “Heuristic bounds and test
problem generation for the time-dependent traveling salesman
problem,” Transportation Science, vol. 29, no. 2, pp. 167–183,
1995.

[17] R. J. V. Wiel and N. V. Sahinidis, “An exact solution approach
for the time-dependent traveling-salesman problem,” Naval
Research Logistics (NRL), vol. 43, no. 6, pp. 797–820, 1996.

[18] A.Montero, I. Mndez-Daz, and J. J. Miranda-Bront, “An integer
programming approach for the time-dependent traveling sales-
man problem with time windows,” Computers & Operations
Research, vol. 88, pp. 280–289, 2017.

[19] J.-F. Cordeau, G. Ghiani, and E. Guerriero, “Analysis and
branch-and-cut algorithm for the time-dependent travelling
salesman problem,” Transportation Science, vol. 48, no. 1, pp.
46–58, 2014.

[20] S. Ichoua,M.Gendreau, and J. Potvin, “Vehicle dispatchingwith
time-dependent travel times,” European Journal of Operational
Research, vol. 144, no. 2, pp. 379–396, 2003.

[21] C. Malandraki and R. B. Dial, “A restricted dynamic pro-
gramming heuristic algorithm for the time dependent traveling
salesman problem,” European Journal of Operational Research,
vol. 90, no. 1, pp. 45–55, 1996.

[22] J. Schneider, “The time-dependent traveling salesman problem,”
Physica A: Statistical Mechanics and Its Applications, vol. 314, no.
1-4, pp. 151–155, 2002.

[23] Y. Xiao and A. Konak, “A simulating annealing algorithm to
solve the green vehicle routing & scheduling problem with
hierarchical objectives and weighted tardiness,” Applied Soft
Computing, vol. 34, pp. 372–388, 2015.

[24] J. Bentner, G. O. G. Bauer, I. Morgenstern, and J. Schneider,
“Optimization of the time-dependent traveling salesman prob-
lem with monte carlo methods,” Physical Review E, 2001.

[25] B. Golden, S. Raghavan, and E. Wasil, Solving the Time Depen-
dent Traveling Salesman Problem, vol. 29, Springer US, 2005.

[26] L. Testa, A. Esterline, G. Dozier, and A. Homaifar, “A compari-
son of operators for solving time-dependent traveling salesman
problems using genetic algorithms,” GECCO, pp. 995–1102,
2000.

[27] A. Lucena, “Time-dependent traveling salesman problem—the
deliveryman case,”Networks, vol. 20, no. 6, pp. 753–763, 1990.

[28] G. Stecco, J.-F. Cordeau, and E. Moretti, “A branch-and-cut
algorithm for a production scheduling problem with sequence-
dependent and time-dependent setup times,” Computers &
Operations Research, vol. 35, no. 8, pp. 2635–2655, 2008.

[29] https://touringplans.com/.
[30] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer program-

ming formulation of traveling salesman problems,” Journal of
the ACM, vol. 7, pp. 326–329, 1960.

[31] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-
scale traveling-salesman problem,” Journal of the Operations
Research Society of America, vol. 2, no. 4, pp. 393–410, 1954.

[32] M. Stoer and F. Wagner, “A simple min-cut algorithm,” Journal
of the ACM, vol. 44, no. 4, pp. 585–591, 1997.

[33] Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter
control in evolutionary algorithms,” IEEE Transactions on
Evolutionary Computation, vol. 3, no. 2, pp. 124–141, 1999.

[34] H. Tamaki, H. Kita, N. Shimizu, K.Maekawa, and Y. Nishikawa,
“Comparison study of genetic codings for the Traveling sales-
man problem,” in Proceedings of the 1st IEEE Conference on
Evolutionary Computation. Part 1 (of 2), pp. 1–6, June 1994.

[35] S. Lin and B. W. Kernighan, “An effective heuristic algorithm
for the traveling-salesman problem,” Operations Research, vol.
21, pp. 498–516, 1973.

[36] L. Davis, Ed., Handbook of, Genetic Algorithms, Von Hostrand
Reinhold, 1991.

[37] D. E. Goldberg, “Genetic algorithms in search, optimization,
and machine learning,” Choice Reviews Online, vol. 27, no. 02,
pp. 27-0936–27-0936, 1989.

[38] D. Whitely, T. Starkweather, and D. Fuquay, “Scheduling prob-
lems and traveling salesman: The genetic edge recombination
operator,” in Proceedings of the Third International Conference
on Genetic Algorithms, Morgan Kaugmann, pp. 133–140, 1989.

[39] F. Glover, “A template for scatter search and path relinking,”
in Artificial Evolution, vol. 1363 of Lecture Notes in Computer
Science, pp. 1–51, Springer, Berlin, Germany, 1998.

[40] F. Glover, “Future paths for integer programming and links to
artificial intelligence,”Computers &Operations Research, vol. 13,
no. 5, pp. 533–549, 1986.

[41] “Tabu search - part 1,” ORSA Journal on Computing, vol. 4, pp.
190–206, 1989.

[42] “Tabu search - part 2,” ORSA Journal on Computing, vol. 2, pp.
4–32, 1989.

[43] F. Glover and M. Laguna, “Tabu search,” in Handbook of
combinatorial optimization, Vol. 3, pp. 621–757, Kluwer Acad.
Publ., Boston, MA, 1998.

[44] G. Stecco, J.-F. Cordeau, and E. Moretti, “A tabu search heuris-
tic for a sequence-dependent and time-dependent scheduling
problem on a single machine,” Journal of Scheduling, vol. 12, no.
1, pp. 3–16, 2009.

[45] É. Taillard, “Parallel iterative searchmethods for vehicle routing
problems,” Networks, vol. 23, no. 8, pp. 661–673, 1993.

https://touringplans.com/

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

	A Comparison of Algorithms for Finding an Efficient Theme Park Tour
	Recommended Citation
	Authors

	tmp.1543588506.pdf.9Y6fe

