Reaching Back to Jump Forward: Recent Efforts towards a Systems-Level Hypothesis for an Early RNA World

Greg Springsteen

Furman University

Follow this and additional works at: https://scholarexchange.furman.edu/chm-citations

Recommended Citation

This Citation is made available online by Chemistry, part of the Furman University Scholar Exchange (FUSE). It has been accepted for inclusion in Chemistry Department Faculty Citations by an authorized FUSE administrator. For terms of use, please refer to the FUSE Institutional Repository Guidelines. For more information, please contact scholarexchange@furman.edu.
Experimental approaches toward discovering the chemical origins of life are often criticized for their lack of holistic guiding hypotheses; though justifiable, these assessments are mitigated somewhat by the general recognition that this is a really, really hard problem.

For the moment, let us set aside the challenges of demonstrating the template-catalyzed polymerization of an RNA replicator that avoids end-product inhibition, and focus solely on a potential prebiotic synthesis of a single pyrimidine nucleoside. The challenges inherent to the construction of just this monomer are formidable. The heterocyclic, saccharide, and phosphate chemical components of the monomer seemingly require multiple incompatible chemistries—and, by the way, these final building blocks do not react even when collected together.

However, this paradigm regarding the prebiotic synthesis of pyrimidine nucleosides has changed in the last few years, predominantly due to the efforts of the Sutherland group,[1–6] which culminated in a recent paper in Nature Chemistry.[7] The narrative of these discoveries begins with the work of a legendary figure in origins of life chemistry, Leslie Orgel, whose group in 1970 published a remarkable synthesis of a cytidine nucleoside from ribose, cyanamide, and cyanoacetylene (Scheme 1A).[8, 9] The direct condensation of ribose and a canonical pyrimidine heterocycle had never been observed under prebiotically plausible conditions (and still has not). However, Orgel’s work side-stepped this difficult nucleosidation by closing the pyrimidine ring on a prebuilt ribose scaffold; interestingly, modern biology uses the same strategy.

However, from the perspective of jumping directly from small molecules to RNA monomers, this remarkable synthesis leaves some gaping holes. For example, how is ribose selected from the multitude of sugars produced from formaldehyde in a formose reaction? How is a continuous synthesis of nucleoside maintained when the reactants, cyanamide and cyanoacetylene, must be added sequentially, and without overlap, to this ribose? How is the primary α-cytidine product epimerized to the canonical β-cytidine (Scheme 1A)?

The work of Sutherland’s group has unified disparate issues within this prebiotic pyrimidine synthesis in a context that potentially connects pyrimidine formation with biologically relevant amino acid and glycerol syntheses. In 2009, the Sutherland lab demonstrated a β-cytidine nucleotide synthesis from the simple sugar precursors glycolaldehyde (C2) and glyceraldehyde (C3), thus avoiding the necessity for a selective ribose synthesis (Scheme 1C).[10] The condensation of glycolaldehyde...
with cyanamide produces 2-aminooxazole, which subsequently condenses with glycolaldehyde, and then cyanocacetylene to form the anhydro-arabino-nucleoside (I, Scheme 1C). Although dependent upon a specific order of reactant addition, each step in the synthesis of I proceeds in a mild aqueous environment and in remarkably good overall selectivity and yield. A regioselective phosphorylation of I is achieved by using ammonium phosphate suspended in heated urea/formamide. Spontaneous phosphorolysis generates the β-cytidine nucleoside containing an active cyclic phosphate diester (II, Scheme 1C).

Beginning the synthesis with C4 and C5 sugar fragments, rather than ribose, was a significant advance in demonstrating a plausible prebiotic synthesis of pyrimidine nucleosides. Subsequently, the Sutherland group sought to reach even further back to a sugar C1 feedstock that is compatible with the HCN chemistry required for the generation of cyanoacetylene and cyanamide reactants.[5–7] The oxidation of HCN to cyanoacetylene and cyanamide can be achieved by electric discharge in the gas phase or photo-oxidation in aqueous solution.[9] HCN is also vital to numerous foundational syntheses in prebiotic chemistry including HCN polymerization to purines and the Strecker reaction to amino acids.

The reduction of HCN to the aldehydic oxidation state required for sugar chemistry is challenging; the reductant must be able to form, but not over-reduce, the imine/aldehyde product. The Sutherland group settled on a disproportionation of HCN catalyzed by a light-activated Cu+ complex (Scheme 2A).[5] The products of the disproportionation are formaldehyde and isocyanic acid. Subsequent reaction of the formaldehyde with cyanide generates cyanohydrin, which is reduced and hydrolyzed to glycolaldehyde, a C2 sugar (Scheme 2B). This procedure of cyanide attack followed by reduction and hydrolysis (a Killiani–Fischer synthesis) can be repeated to produce glycolaldehyde, a C2 sugar, from glycolaldehyde. Both sugars were detected as their oxazolidinones, which were produced by spontaneous condensation of the aldehydes with isocyanic acid (Scheme 2C). These oxazolidinones are not productive in pyrimidine synthesis, and thus research efforts were begun to find a prebiotically plausible sacrificial reductant that would avoid isocyanic acid formation, and the resulting irreversible glycol- and glyceraldehyde sequestration.[6–7] Hydrogen sulfide was found to be both a suitable and plausible reagent.

The reaction of hydrogen sulfide with cyanoacetylene in the presence of catalytic Cu+ produces glycolaldehyde in over 40% yield (Scheme 3A).[6] As oxazolidinone formation is prevented, the generation of other carbonyl compounds such as glyceraldehyde (by reductive homologation of glycolaldehyde, Scheme 3B) as well as acetaldehyde and formaldehyde (by reduction of glycolaldehyde) becomes more evident. Interestingly, subsequent addition of 1 equiv of cyanide and excess ammonia at pH 9 slowly produces the nitrile analogues of serine, glycine, and alanine from glycolaldehyde, formaldehyde, and acetaldehyde, respectively (Scheme 3C). Additionally, the aminonitriles are more resistant to reduction than the cyanohydrins, thus providing a rationale for the generation of nucleotides from the reduction of cyanohydrins (NC-CH2-OH) and amino acids from the hydration of aminonitriles (NC-CH2-NH2). These results potentially link amino acid and nucleoside synthesis to common building blocks and a common environment.

In their most recent work,[7] the Sutherland group has shown that glyceraldehyde, produced from the reductive homologation of glycolaldehyde, tautomerizes to dihydroxyacetone in 60% yield in phosphate buffer (Scheme 4). Reduction of dihydroxyacetone produces both acetone and glycerol, again in high yields. Glycerol was quantitatively phosphorylated into a mixture of phosphate isomers by heating with ammonium phosphate in urea/formamide. Glycerol phosphates are the fatty ester/ether linkers required for membrane synthesis across all of biology, and represent another cog in a poten-

![Scheme 2](image-url)
A) An irradiated (254 nm) copper(I)-catalyzed disproportionation of hydrogen cyanide produces formaldehyde and isocyanic acid. B) Reductive homologation of formaldehyde and glycolaldehyde with cyanide generates glycolaldehyde (15%) and glyceraldehyde (1–5%), respectively. C) Glycolaldehyde and glyceraldehyde are trapped by isocyanic acid as oxazolidinones.

![Scheme 3](image-url)
A) The reduction of cyanoacetylene produces glycolaldehyde in 42% yield (after 2 h), and acetaldehyde in 15% yield (after 6 h). B) Glyceraldehyde is produced in 17% yield by the reductive homologation of glycolaldehyde. C) The aminonitrile precursors of amino acids are generated from the nucleophilic addition of cyanide to an imine.
tial systems-level hypothesis for the origin of multiple biological polymers from a single source. The acetone also provides an entry into valine and leucine amino acid syntheses through reductive homologations with cyanide and sodium sulfide.

The Sutherland group has proposed a scenario to link three major prebiotic syntheses back to a common environment containing cyanide and hydrogen sulfide. Experimental verification of the scenario demonstrates a succession of selective, high-yielding reactions. The overall scheme still requires multiple incompatible chemistries (arguably 1–5, Scheme 5) that require separation prior to pooling. A scenario is described in which streams, fed by rain and mineral deposits, might have allowed this isolated chemistry to occur before recombination. Though this argument is not, on its surface, as “aesthetic” as the field might hope, it still represents the most holistic, experimentally supported hypothesis on the origins of an RNA world directly from small building blocks.

Acknowledgements

G.S acknowledges support from the NSF and the NASA Astrobiology Program under the NSF Center for Chemical Evolution, CHE1004570.

Keywords: glyceraldehyde · glycolaldehyde · origins of life · pyrimidines · RNA world

Manuscript received: May 7, 2015
Accepted article published: May 25, 2015
Final article published: June 1, 2015