Protocol to Determine Changes to the Torque Velocity Curve above Critical Power while Cycling

Kelly Humes: Collaboration with Dr. Randolph Hutchison1, Karlee Edwards1, Gibson Klapthor1, Kristine Knowles1, Gregory Mocko2, & Ardalan Vahidi2
1 Department of Health Sciences, Furman University Molnar Lab 2 Department of Mechanical Engineering, Clemson University

I. BACKGROUND:
- Colon, breast, and prostate cancer risks can be reduced by physical activity, but assessment methods are self-reported, crude, and often imprecise.
- Better objective methods are needed to improve the validity and reliability of non-invasive physical activity measurement devices.
- Furthermore, specific activity prescriptions should be individualized and require improvements in assessment protocols.

II. PROPOSED MODEL
- As part of an overall model, cycling has been proven successful in physical activity assessment, due to its applicability from rehabilitation populations to elite athletes, but individualized determination between moderate and vigorous activity is needed.
- This study demonstrates how a series of three individualized tests can determine an individual's Anaerobic Work Capacity (AWC), the threshold between heavy and severe exercise known as Critical Power (CP), and the correlation between AWC expended (AWCexp) and changes to the torque-velocity curve (T-v).

III. METHODS
- Male (n=10) and female (n=2) subjects, regularly trained cyclists or triathletes. Age (37.8 ± 11.6 yrs). Weight (72.7±16.2 kg)
- Exercise at increasing powers until exhaustion.
- CP: last 30 second average, AWC="area under the curve"
- 3 Separate T-v sprints, each at a different AWCexp fatigue levels based on predicted 6-min exhaustive power (CP6).

IV. RESULTS
- Effects of Theoretical AWCexp on T-v Curve.

V. CONCLUSIONS
- Previous work (Butelli, 1996) has looked at changes in the T-v curve verses varying cycling intensities.
- Our work extends this idea to incorporate CP and AWC for the purposes of modeling a state of fatigue.
- Potentially, at any moment in time, a 6-second sprint could determine a subject's state of fatigue.

VI. CONCURRENT & FUTURE STUDIES
- Predicting the Expenditure of AWCexp Based on Changes to the T-v Curve (Karlee Edwards)
- Comparison of Threshold Determination between Blood Lactate Samples and Near Infrared Spectroscopy (NIRS) (Kristine Knowles)
- Modeling of real-time power output based on wearable, non-invasive NIRS device (Clemson Univ.)

VII. REFERENCES

ACKNOWLEDGEMENTS: Dr. Scott Murr, Dr. Ray Moss
CONTACT: kellyannhumes@gmail.com, Randolph.Hutchinson@furman.edu; karlee.edwards@furman.edu, kristine.knowles@furman.edu

DEPARTMENT OF HEALTH SCIENCE • FURMAN UNIVERSITY