Representations of functions are compared using the traditional technique of Fourier series with a more modern technique using wavelets. Under certain conditions, a function can be represented with a sum of sine and cosine functions. Such a representation is called a Fourier series. This classical method is used in applications such as storage of sound waves and visual images on a computer. One problem with this sum is that it is infinite. In use, only a finite number of terms can be used. More accuracy requires more terms in the series, but more terms require more time to compute and more space to store. A new type of sum called a wavelet series was first introduced in the 1980’s. With these new series the same accuracy often takes fewer terms. Since wavelet representations can be more accurate and take less computer time, they are often more useful.

Faculty Advisor Name

Susan E. Kelly

Faculty Advisor Institution

University of Wisconsin - La Crosse

Suggested Mathematics Subject Classification(s)

42C40, 42A16


This paper was written while the author was an undergraduate student at the University of Wisconsin - La Crosse. The paper is also published in the University of Wisconsin - La Crosse Journal of Undergraduate Research.

Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.