Sequence recognition in the minor groove of DNA by covalently linked formamido imidazole-pyrrole-imidazole polyamides: effect of H-pin linkage and linker length on selectivity and affinity
ACS Citation
O'Hare, C.; Uthe, P. B.; Mackay, H.; Blackmon, K. N.; Jones, J. B.; Brown, T.; Nguyen, B.; Wilson, W. D.; Lee, M.; Hartley, J. A. Sequence recognition in the minor groove of DNA by covalently linked formamido imidazole-pyrrole-imidazole polyamides: effect of H-pin linkage and linker length on selectivity and affinity. Biochemistry 2007, 46, 11661-70.
Version of Record
Abstract
The polyamide N-formamido imidazole-pyrrole-imidazole (f-ImPyIm) binds with an exceptionally high affinity for its cognate site 5'-ACGCGT-3' as a stacked, staggered, and noncovalent cooperative dimer. Investigations are presented into its sequence specificity and binding affinity when linked covalently as an H-pin "dimer". Five f-ImPyIm cross-linked analogues with six to nine methylene linkers and an eight-linked ethylene glycol linker were examined to investigate the effect of linkage and linker length on DNA binding. Thermal denaturation studies on short DNA hairpins showed preferential binding by both f-ImPyIm (DeltaTm = 7.8 degrees C) and its cross-linked derivatives (DeltaTm > 30 degrees C) at 5'-ACGCGT-3', indicating sequence specificity was retained on linkage. DNase I footprinting confirmed strict cognate site selectivity and demonstrated that affinity increased with linker length (f-ImPyIm-9 = f-ImPyIm-8 = f-ImPyIm-EG-8 > f-ImPyIm-7 > f-ImPyIm-6). The eight- and nine-linked derivatives bound at 100-fold lower concentrations at the cognate site relative to f-ImPyIm-6, and with 10-fold higher affinity than unlinked f-ImPyIm. Use of an ethylene glycol linkage in f-ImPyIm-EG-8 to improve solubility slightly increased the cognate site affinity relative to those of f-ImPyIm-8 and f-ImPyIm-9, although some selectivity was lost at high ligand concentration. CD demonstrated that cognate site binding by eight and nine-linked compounds occurred in the minor groove. SPR analysis gave a binding affinity (K) for f-ImPyIm-EG-8 at the cognate site of 2 x 10(10) M-1, representing a 100-fold increase relative to that of f-ImPyIm. This study demonstrates that the high-affinity cooperative binding of f-ImPyIm can be enhanced significantly by suitable covalent linkage, while maintaining its strict cognate site selectivity.
Source Name
Biochemistry
Publication Date
1-1-2007
Volume
46
Issue
42
Document Type
Citation
Citation Type
Article