Functionalised inherently conducting polymers as low biofouling materials
ACS Citation
Zhang, B.; Nagle, A. R.; Wallace, G. G.; Hanks, T. W.; Molino, P. J. Functionalised Inherently Conducting Polymers as Low Biofouling Materials. Biofouling, 2015, 31 (6), 493-502.
Version of Record
Abstract
Diatoms are a major component of microbial biofouling layers that develop on man-made surfaces placed in aquatic environments, resulting in significant economic and environmental impacts. This paper describes surface functionalisation of the inherently conducting polymers (ICPs) polypyrrole (PPy) and polyaniline (PANI) with poly(ethylene glycol) (PEG) and their efficacy as fouling resistant materials. Their ability to resist interactions with the model protein bovine serum albumin (BSA) was tested using a quartz crystal microbalance with dissipation monitoring (QCM-D). The capacity of the ICP-PEG materials to prevent settlement and colonisation of the fouling diatom Amphora coffeaeformis (Cleve) was also assayed. Variations were demonstrated in the dopants used during ICP polymerisation, along with the PEG molecular weight, and the ICP-PEG reaction conditions, all playing a role in guiding the eventual fouling resistant properties of the materials. Optimised ICP-PEG materials resulted in a significant reduction in BSA adsorption, and > 98% reduction in diatom adhesion.
Source Name
Biofueling
Publication Date
2015
Volume
31
Issue
6
Page(s)
493-502
Document Type
Citation
Citation Type
Article