Exploring the Rich Potential Energy Surface of (H2O)11 and Its Physical Implications

ACS Citation

Temelso, B.; Klein K. L.; Mabey, J. W.; Perez, C.; Pate, B. H.; Kisiel, Z.; Shields, G. C. Exploring the Rich Potential Energy Surface of (H2O)11 and Its Physical Implications J. Chem. Theory Comput., 2018, 14, 1141-1153.

Abstract

The rich potential energy surface of the water undecamer (H2O)11 was explored with a basin hopping algorithm using a TIP4P potential and other methods followed by extensive ab initio MP2 minimizations and CCSD(T) corrections. This protocol yielded 17, 66, and 125 distinct isomers within 0.5, 1.0, and 2.0 kcal mol−1 of the complete basis set CCSD(T) global minimum, respectively. These isomers were categorized into 15 different families based on their oxygen framework and hydrogen bonding topology. Determination of the global minimum proved challenging because of the presence of many nearly isoenergetic isomers. The predicted global minimum varied among ab initio methods, density functionals, and model potentials, and it was sensitive to the choice of energy extrapolation schemes, higher- order CCSD(T) corrections, and inclusion of zero-point vibrational energy. The presence of a large number of nearly degenerate structures and the isomerization between them has manifested itself in the anomalous broadening of the heat capacity curve of the undecamer in simulations around the melting region.

Source Name

Journal of Chemical Theory and Computation

Publication Date

2018

Volume

14

Page(s)

1141-1153

Document Type

Citation

Citation Type

Article

Share

COinS