Exploring the Rich Potential Energy Surface of (H2O)11 and Its Physical Implications
ACS Citation
Temelso, B.; Klein K. L.; Mabey, J. W.; Perez, C.; Pate, B. H.; Kisiel, Z.; Shields, G. C. Exploring the Rich Potential Energy Surface of (H2O)11 and Its Physical Implications J. Chem. Theory Comput., 2018, 14, 1141-1153.
Version of Record
Abstract
The rich potential energy surface of the water undecamer (H2O)11 was explored with a basin hopping algorithm using a TIP4P potential and other methods followed by extensive ab initio MP2 minimizations and CCSD(T) corrections. This protocol yielded 17, 66, and 125 distinct isomers within 0.5, 1.0, and 2.0 kcal mol−1 of the complete basis set CCSD(T) global minimum, respectively. These isomers were categorized into 15 different families based on their oxygen framework and hydrogen bonding topology. Determination of the global minimum proved challenging because of the presence of many nearly isoenergetic isomers. The predicted global minimum varied among ab initio methods, density functionals, and model potentials, and it was sensitive to the choice of energy extrapolation schemes, higher- order CCSD(T) corrections, and inclusion of zero-point vibrational energy. The presence of a large number of nearly degenerate structures and the isomerization between them has manifested itself in the anomalous broadening of the heat capacity curve of the undecamer in simulations around the melting region.
Source Name
Journal of Chemical Theory and Computation
Publication Date
2018
Volume
14
Page(s)
1141-1153
Document Type
Citation
Citation Type
Article