Probing Free Energy of Small Water Clusters: Revisiting Classical Nucleation Theory

ACS Citation

Afzalifar, A.; Shields, G.C.; Fowler, V.R; Ras, R. “Probing Free Energy of Small Water Clusters: Revisiting Classical Nucleation Theory." J. Phys. Chem. Lett. 2022 13 8038-8046.

Abstract

By addressing the defects in classical nucleation theory (CNT), we develop an approach for extracting the free energy of small water clusters from nucleation rate experiments without any assumptions about the form of the cluster free energy. For temperatures higher than approximately 250 K, the extracted free energies from experimental data points indicate that their ratio to the free energies predicted by CNT exhibits nonmonotonic behavior as the cluster size changes. We show that this ratio increases from almost zero for monomers and passes through (at least) one maximum before approaching one for large clusters. For temperatures lower than approximately 250 K, the behavior of the ratio between extracted energies and CNT’s prediction changes; it increases with cluster size, but it remains below one for almost all of the experimental data points. We also applied a state-of-the-art quantum mechanics model to calculate free energies of water clusters (2−14 molecules); the results support the observed change in behavior based on temperature, albeit for temperatures above and below 298 K. We compared two different model chemistries, DLPNO-CCSD(T)/CBS//ωB97xD/6-31++G** and G3, against each other and the experimental value for formation of the water dimer.

Source Name

Journal of Physical Chemistry Letters

Publication Date

8-22-2022

Volume

13

Issue

34

Page(s)

8038-8046

Document Type

Citation

Citation Type

Article

Share

COinS