Document Type
Article (Journal or Newsletter)
Scholarship Type
Faculty Scholarship, Student Scholarship
Publication Date
12-30-2019
Abstract
Adult fish produce new cells throughout their central nervous system during the course of their lives and maintain a tremendous capacity to repair damaged neural tissue. Much of the focus on understanding brain repair and regeneration in adult fish has been directed at regions of the brainstem and forebrain; however, the mesencephalon (midbrain) and diencephalon have received little attention. We sought to examine differential gene expression in the midbrain/diencephalon in response to injury in the adult fish using RNA-seq. Using the mummichog (Fundulus heteroclitus), we administered a mechanical lesion to the midbrain/diencephalon and examined differentially expressed genes (DEGs) at an acute recovery time of 1 h post-injury. Comparisons of whole transcriptomes derived from isolated RNA of intact and injured midbrain/diencephalic tissue identified 404 DEGs with the vast majority being upregulated. Using qPCR, we validated the upregulation of DEGs pim-2-like, syndecan-4-like, and cd83. Based on genes both familiar and novel regarding the adult brain response to injury, these data provide an extensive molecular profile giving insight into a range of cellular processes involved in the injury response of a brain regenerative-capable vertebrate.
Additional Affiliated Department, Center or Institute
Biology, Neuroscience
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Recommended Citation
Bisese, E.C., Ciuba, C.M., Davidson, A.L. et al. The acute transcriptome response of the midbrain/diencephalon to injury in the adult mummichog (Fundulus heteroclitus). Mol Brain 12, 119 (2019). https://doi.org/10.1186/s13041-019-0542-4
Comments
Open access publication of this article was supported by the Furman University Libraries Open Access Fund.