Optimizing Underwater Turbines To Improve The Efficiency Of Ocean Energy Generation

Author(s)

Tyler Wrenn

School Name

The Center for Advanced Technical Studies

Grade Level

11th Grade

Presentation Topic

Engineering

Presentation Type

Non-Mentored

Abstract

The goal of this project is to design and fabricate a more efficient underwater turbine blade to optimize ocean energy generation. This project will focus the blade design on aquatic animal fins to an existing underwater turbine device to improve efficiency. Since aquatic animals use specific distinct fin designs constantly and highly efficiently, it seems reasonable to mimic the design for turbine blades. The goal of this study is to mimic aquatic animal fins on existing turbine blades to improve efficiency by using an Ampair UW100. For this project an underwater flow meter from PASCO was used to measure water flow rates in the test tank and a high voltage sensor from Vernier with Logger pro software was used to analyze output from the generator. Results to date indicate that a trolling motor can be used to produce various flow rates from .412-.836 m/s. At trolling motor speed 4 a speed of .412 m/s is achieved, trolling motor speed 6 a speed of .612 m/s, trolling motor speed 7 a speed of .710 m/s, trolling motor speed 8 a speed of .836 m/s is achieved. So far the maximum voltage reached was 15.208 V with a motor speed of 8. Current blade designs include a pectoral fin of a humpback whale, tuna fish and sail fish and the dorsal fin of a dolphin. The next phase of this project has involved 3D printing of turbine blades in various designs and the creation of a metal hub for quick blade changes between trials.

Start Date

4-11-2015 10:30 AM

End Date

4-11-2015 10:45 AM

COinS
 
Apr 11th, 10:30 AM Apr 11th, 10:45 AM

Optimizing Underwater Turbines To Improve The Efficiency Of Ocean Energy Generation

The goal of this project is to design and fabricate a more efficient underwater turbine blade to optimize ocean energy generation. This project will focus the blade design on aquatic animal fins to an existing underwater turbine device to improve efficiency. Since aquatic animals use specific distinct fin designs constantly and highly efficiently, it seems reasonable to mimic the design for turbine blades. The goal of this study is to mimic aquatic animal fins on existing turbine blades to improve efficiency by using an Ampair UW100. For this project an underwater flow meter from PASCO was used to measure water flow rates in the test tank and a high voltage sensor from Vernier with Logger pro software was used to analyze output from the generator. Results to date indicate that a trolling motor can be used to produce various flow rates from .412-.836 m/s. At trolling motor speed 4 a speed of .412 m/s is achieved, trolling motor speed 6 a speed of .612 m/s, trolling motor speed 7 a speed of .710 m/s, trolling motor speed 8 a speed of .836 m/s is achieved. So far the maximum voltage reached was 15.208 V with a motor speed of 8. Current blade designs include a pectoral fin of a humpback whale, tuna fish and sail fish and the dorsal fin of a dolphin. The next phase of this project has involved 3D printing of turbine blades in various designs and the creation of a metal hub for quick blade changes between trials.